

A048874


Almostcubes: numbers n such that n/s(n) >= k/s(k) for all k<n, where s(m) is the least surface area of a rectangular parallelepiped with integer side lengths and volume m.


0



1, 2, 3, 4, 6, 8, 12, 16, 18, 24, 27, 32, 36, 45, 48, 54, 60, 64, 72, 75, 80, 90, 96, 100, 112, 120, 125, 140, 144, 150, 168, 175, 180, 200, 210, 216, 240, 245, 252, 280, 288, 294, 320, 324, 336, 343, 378, 384, 392, 420, 432, 441, 448, 480, 486, 490, 504, 512
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..57.
S. Alspaugh, Farmer Ted Goes 3D, Mathematics Magazine, Vol. 78, No. 3 (Jun., 2005), pp. 192204.
M. DeLong, Undergraduate Mathematics Research at Taylor University [Warning: certificate error]


EXAMPLE

A rectangular parallelepiped with side lengths 1,2 and 3 has volume 6 and surface area 22. The ratio of volume to surface area is 6/22, which is greater than the ratio of volume to surface area for any rectangular parallelepiped with integer sides and volume < 6. Therefore 6 is an almostcube.


MATHEMATICA

s[m_] := s[m] = First[Minimize[{a*b + b*c + c*a, a*b*c == m, 1 <= a <= b <= c}, {a, b, c}, Integers]]; almostCubeQ[ n_] := (r = For[k = 1, k < n, k++, If[n/s[n] < k/s[k], Return[False]] ] ; r =!= False); Reap[For[n = 1, n <= 512, n++, If[almostCubeQ[n], Print[n]; Sow[n]]]][[2, 1]] (* JeanFrançois Alcover, Oct 03 2012 *)


CROSSREFS

Cf. A033501.
Sequence in context: A240557 A326712 A191612 * A092824 A084094 A217689
Adjacent sequences: A048871 A048872 A048873 * A048875 A048876 A048877


KEYWORD

easy,nonn,nice


AUTHOR

Shawn Alspaugh (shalspau(AT)indiana.edu) and Matt DeLong (mtdelong(AT)tayloru.edu)


STATUS

approved



