login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048870 Triangle of coefficients of certain Sheffer-polynomials. 0
1, 1, 1, 4, 10, 1, 30, 132, 27, 1, 336, 2232, 696, 52, 1, 5040, 46320, 19500, 2200, 85, 1, 95040, 1141920, 606960, 91800, 5340, 126, 1, 2162160, 32639040, 20991600, 3986640, 310170, 11004, 175, 1, 57657600, 1061746560, 802287360, 183550080 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

s(n,x) := sum(a(n,m)*x^m,m=0..n) are monic polynomials satisfying s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), with polynomials p(n,x)=sum(A048786(n,m)*x^m, m=1..n) (row polynomials of triangle A048786) and p(0,x)=1. In the umbral calculus (see reference) the s(n,x) are called Sheffer polynomials for(c(t/(1+4*t)),t/(1+4*t)), where c(x) = g.f. for Catalan numbers A000108. a(n,0) = A001761(n-2) = n!*A000108(n).

REFERENCES

S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

LINKS

Table of n, a(n) for n=0..39.

FORMULA

a(n, m) = (n!/m!)*A046527(n, m) = (n!/m!)*binomial(n, m-1)*(4^(n-m+1)-binomial(2*n, n)/binomial(2*(m-1), m-1))/2, n >= m >= 0, a(n, m) := 0, n<m.

CROSSREFS

A046527, A048786, A000108, A001761.

Sequence in context: A279082 A016488 A087212 * A244152 A070261 A054048

Adjacent sequences:  A048867 A048868 A048869 * A048871 A048872 A048873

KEYWORD

easy,nonn,tabl

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 00:32 EST 2020. Contains 331313 sequences. (Running on oeis4.)