The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048766 Integer part of cube root of n. Or, number of cubes <= n. Or, n appears 3n^2 + 3n + 1 times. 42
 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 K. Atanassov, On the 100th, 101st and 102nd Smarandache Problems, On Some of Smarandache's Problems, American Research Press, 1999, pp. 57-61. Reprinted in Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 94-96. F. Smarandache, Only Problems, Not Solutions!. FORMULA G.f.: Sum_{k>=1} x^(k^3)/(1-x). - Geoffrey Critzer, Feb 05 2014 a(n) = Sum_{i=1..n} A210826(i)*floor(n/i). - Ridouane Oudra, Jan 21 2021 MAPLE A048766 := proc(n) floor(root[3](n)) ; end proc: seq(A048766(n), n=0..80) ; # R. J. Mathar, Dec 20 2020 MATHEMATICA a[n_]:=IntegerPart[n^(1/3)]; lst={}; Do[AppendTo[lst, a[n]], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 02 2008 *) PROG (Haskell) a048766 = round . (** (1/3)) . fromIntegral a048766_list = concatMap (\x -> take (a003215 x) \$ repeat x) [0..] -- Reinhard Zumkeller, Sep 15 2013, Oct 22 2011 (PARI) a(n)=floor(n^(1/3)) \\ Charles R Greathouse IV, Mar 20 2012 (PARI) a(n) = sqrtnint(n, 3); \\ Michel Marcus, Nov 10 2015 (Magma) [n eq 0 select 0 else Iroot(n, 3): n in [0..110]]; // Bruno Berselli, Feb 20 2015 (Python) from sympy import integer_nthroot def a(n): return integer_nthroot(n, 3)[0] print([a(n) for n in range(105)]) # Michael S. Branicky, Oct 19 2021 CROSSREFS Cf. A000196, A003215, A007412. Sequence in context: A053230 A194334 A242259 * A105516 A105518 A111896 Adjacent sequences: A048763 A048764 A048765 * A048767 A048768 A048769 KEYWORD nonn,easy AUTHOR Charles T. Le (charlestle(AT)yahoo.com) EXTENSIONS Additional comments from Reinhard Zumkeller, Oct 07 2001 More terms from Benoit Cloitre, Jan 30 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:22 EST 2022. Contains 358649 sequences. (Running on oeis4.)