%I #24 Aug 15 2022 04:31:01
%S 0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27,27,27,27,
%T 27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,
%U 27,27,27,27,27,27,27,27,27,64,64,64
%N Largest cube <= n.
%D Krassimir T. Atanassov, On the 40th and 41st Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 4, No. 3 (1998), 101-104.
%D J. Castillo, Other Smarandache Type Functions: Inferior/Superior Smarandache f-part of x, Smarandache Notions Journal, Vol. 10, No. 1-2-3 (1999), 202-204.
%H Reinhard Zumkeller, <a href="/A048762/b048762.txt">Table of n, a(n) for n = 0..10000</a>
%H Florentin Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>.
%H Krassimir T. Atanassov, <a href="http://www.gallup.unm.edu/~smarandache/Atanassov-SomeProblems.pdf">On Some of Smarandache's Problems</a>, American Research Press, 1999, 27-32.
%F Sum_{n>=1} 1/a(n)^2 = Pi^4/30 + Pi^6/945 + 3*zeta(5). - _Amiram Eldar_, Aug 15 2022
%p A048762 := proc(n)
%p floor(root[3](n)) ;
%p %^3 ;
%p end proc: # _R. J. Mathar_, Nov 06 2011
%t Floor[Surd[Range[0,70],3]]^3 (* _Harvey P. Dale_, Jun 23 2013 *)
%o (Haskell)
%o a048762 n = last $ takeWhile (<= n) a000578_list
%o -- _Reinhard Zumkeller_, Nov 28 2011
%Y Cf. A048763, A201053, A000578.
%K nonn
%O 0,9
%A Charles T. Le (charlestle(AT)yahoo.com)