login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048612 Find smallest pair (x,y) such that x^2-y^2 = 11...1 (n times) = (10^n-1)/9; sequence gives value of y. 2
0, 5, 17, 45, 115, 67, 2205, 2933, 166667, 44445, 245795, 6667, 132683733, 4444445, 2012917, 23767083, 2680575317, 666667, 555555555555555555, 83053525, 3263104267, 12488376483, 5555555555555555555555, 66666667, 2952525627555 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Least solutions for 'Difference between two squares is a repunit of length n'.

REFERENCES

David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, p. 119. ISBN 0-14-026149-4.

LINKS

Table of n, a(n) for n=0..24.

H. Havermann, Repunit Square Differences (gives many more terms)

EXAMPLE

For n=2, 6^2-5^2=11.

MATHEMATICA

s = Flatten[Table[r = (10^i - 1)/9; d = Divisors[r]; p = d[[Length[d]/2]]; Solve[{x - y == p, x + y == r/p}, {y, x}], {i, 2, 56}]]; Prepend[Cases[s, Rule[y, n_] -> n], 0]

CROSSREFS

Cf. A048611, A000042, A002275.

Sequence in context: A133252 A247618 A269962 * A218135 A271122 A147050

Adjacent sequences:  A048609 A048610 A048611 * A048613 A048614 A048615

KEYWORD

nonn,nice

AUTHOR

Felice Russo

EXTENSIONS

Corrected and extended by Patrick De Geest, Jun 15 1999. More terms from Hans Havermann, Jul 02 2000.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 19 01:29 EDT 2017. Contains 290787 sequences.