login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048608 Denominators of coefficients in function a(x) such that a(a(x)) = log(1+x). 1
1, 4, 48, 96, 3840, 30720, 13440, 2064384, 92897280, 594542592, 130799370240, 1121137459200, 40809403514880, 816188070297600, 48971284217856000, 5484783832399872000, 62160883433865216000, 1918107260244983808000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A recursion exists for coefficients, but is too complicated to use without a computer algebra system.

REFERENCES

W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999

W. C. Yang, Composition equations, preprint, 1999

LINKS

Table of n, a(n) for n=0..17.

W. C. Yang, Derivatives are essentially integer partitions, Discrete Math., 222 (2000), 235-245.

EXAMPLE

x - x^2/4 + x^3 * 5/48 + ...

MATHEMATICA

n = 18; a[x_] = Sum[c[k] k! x^k, {k, 1, n}]; sa = Series[a[x], {x, 0, n}]; coes = CoefficientList[ ComposeSeries[sa, sa] - Series[Log[1+x], {x, 0, n}], x] // Rest; eq = Reduce[((# == 0) & /@ coes)]; Table[c[k] k!, {k, 1, n}] /. First[Solve[eq, Table[c[k], {k, 1, n}]]] // Denominator (* Jean-François Alcover, Mar 28 2011  + upgrading by Olivier Gérard *)

T[n_, m_] := T[n, m] = If[n == m, 1, (StirlingS1[n, m]*m!/n! - Sum[T[n, i]*T[i, m], {i, m+1, n-1}])/2]; a[n_] := T[n+1, 1] // Denominator; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 16 2014, after Vladimir Kruchinin *)

CROSSREFS

Cf. A048607.

Sequence in context: A178429 A242225 A157818 * A275033 A192418 A162673

Adjacent sequences:  A048605 A048606 A048607 * A048609 A048610 A048611

KEYWORD

frac,nonn,nice

AUTHOR

Winston C. Yang (yang(AT)math.wisc.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 20:10 EST 2019. Contains 319350 sequences. (Running on oeis4.)