This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048602 Numerators of coefficients in function a(x) such that a(a(x)) = sin(x). 11

%I

%S 1,-1,-1,-53,-23,-92713,-742031,594673187,329366540401,

%T 104491760828591,1508486324285153,-582710832978168221,

%U -1084662989735717135537,-431265609837882130202597,784759327625761394688977441

%N Numerators of coefficients in function a(x) such that a(a(x)) = sin(x).

%C A recursion exists for coefficients, but is too complicated to process without a computer algebra system.

%D W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999

%D W. C. Yang, Composition equations, preprint, 1999

%H Dmitry Kruchinin, Vladimir Kruchinin, <a href="http://arxiv.org/abs/1302.1986">Method for solving an iterative functional equation A^{2^n}(x) = F(x)</a>, arXiv:1302.1986 [math.CO], 2013.

%H W. C. Yang, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00412-4">Derivatives are essentially integer partitions</a>, Discrete Math., 222 (2000), 235-245.

%F T(n,m) = if n=m then 1 else ((((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n *binomial(m,i)*(-1)^((n+m)/2-i)))/(2^m*n!) -sum(T(n,i)*T(i,m), i=m+1..n-1))/2; a(n)=numerator(T(n,1)). - _Vladimir Kruchinin_, Nov 08 2011

%e x - x^3/12 - x^5/160 ...

%t n = 15; m = 2 n - 1 (* m = maximal degree *); a[x_] = Sum[c[k] x^k, {k, 1, m, 2}] ; coes = DeleteCases[CoefficientList[Series[a@a@x - Sin[x], {x, 0, m}], x] // Rest , 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}]; (- CoefficientList[a[x] /. Flatten @ Array[s, n], x] // Numerator // Partition[#, 2] &)[[All, 2]] (* _Jean-François Alcover_, May 05 2011 *)

%o (Maxima)

%o T(n,m):= if n=m then 1 else ((((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i),i,0,m/2))/(2^m*n!)-sum(T(n,i)*T(i,m),i,m+1,n-1))/2; makelist(num(T(n,1)),n,1,10); \\ _Vladimir Kruchinin_, Nov 08 2011

%Y Cf. A048603. Apart from signs, the same sequence as A048606.

%K frac,sign,nice

%O 0,4

%A Winston C. Yang (yang(AT)math.wisc.edu)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.