login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048602 Numerators of coefficients in function a(x) such that a(a(x)) = sin(x). 11
1, -1, -1, -53, -23, -92713, -742031, 594673187, 329366540401, 104491760828591, 1508486324285153, -582710832978168221, -1084662989735717135537, -431265609837882130202597, 784759327625761394688977441 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A recursion exists for coefficients, but is too complicated to process without a computer algebra system.

REFERENCES

W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999

W. C. Yang, Composition equations, preprint, 1999

LINKS

Table of n, a(n) for n=0..14.

Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x) = F(x), arXiv:1302.1986 [math.CO], 2013.

W. C. Yang, Derivatives are essentially integer partitions, Discrete Math., 222 (2000), 235-245.

FORMULA

T(n,m) = if n=m then 1 else ((((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n *binomial(m,i)*(-1)^((n+m)/2-i)))/(2^m*n!) -sum(T(n,i)*T(i,m), i=m+1..n-1))/2; a(n)=numerator(T(n,1)). - Vladimir Kruchinin, Nov 08 2011

EXAMPLE

x - x^3/12 - x^5/160 ...

MATHEMATICA

n = 15; m = 2 n - 1 (* m = maximal degree *); a[x_] = Sum[c[k] x^k, {k, 1, m, 2}] ; coes = DeleteCases[CoefficientList[Series[a@a@x - Sin[x], {x, 0, m}], x] // Rest , 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}]; (- CoefficientList[a[x] /. Flatten @ Array[s, n], x] // Numerator // Partition[#, 2] &)[[All, 2]] (* Jean-Fran├žois Alcover, May 05 2011 *)

PROG

(Maxima)

T(n, m):= if n=m then 1 else ((((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m, i)*(-1)^((n+m)/2-i), i, 0, m/2))/(2^m*n!)-sum(T(n, i)*T(i, m), i, m+1, n-1))/2; makelist(num(T(n, 1)), n, 1, 10); \\ Vladimir Kruchinin, Nov 08 2011

CROSSREFS

Cf. A048603. Apart from signs, the same sequence as A048606.

Sequence in context: A143385 A231426 * A048606 A033373 A171132 A259091

Adjacent sequences:  A048599 A048600 A048601 * A048603 A048604 A048605

KEYWORD

frac,sign,nice

AUTHOR

Winston C. Yang (yang(AT)math.wisc.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 02:59 EDT 2017. Contains 288777 sequences.