login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048602 Numerators of coefficients in function a(x) such that a(a(x)) = sin(x). 11
1, -1, -1, -53, -23, -92713, -742031, 594673187, 329366540401, 104491760828591, 1508486324285153, -582710832978168221, -1084662989735717135537, -431265609837882130202597, 784759327625761394688977441 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A recursion exists for coefficients, but is too complicated to process without a computer algebra system.

REFERENCES

W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999

W. C. Yang, Composition equations, preprint, 1999

LINKS

Table of n, a(n) for n=0..14.

Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x) = F(x), arXiv:1302.1986 [math.CO], 2013.

W. C. Yang, Derivatives are essentially integer partitions, Discrete Math., 222 (2000), 235-245.

FORMULA

T(n,m) = if n=m then 1 else ((((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n *binomial(m,i)*(-1)^((n+m)/2-i)))/(2^m*n!) -sum(T(n,i)*T(i,m), i=m+1..n-1))/2; a(n)=numerator(T(n,1)). - Vladimir Kruchinin, Nov 08 2011

EXAMPLE

x - x^3/12 - x^5/160 ...

MATHEMATICA

n = 15; m = 2 n - 1 (* m = maximal degree *); a[x_] = Sum[c[k] x^k, {k, 1, m, 2}] ; coes = DeleteCases[CoefficientList[Series[a@a@x - Sin[x], {x, 0, m}], x] // Rest , 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}]; (- CoefficientList[a[x] /. Flatten @ Array[s, n], x] // Numerator // Partition[#, 2] &)[[All, 2]] (* Jean-Fran├žois Alcover, May 05 2011 *)

PROG

(Maxima)

T(n, m):= if n=m then 1 else ((((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m, i)*(-1)^((n+m)/2-i), i, 0, m/2))/(2^m*n!)-sum(T(n, i)*T(i, m), i, m+1, n-1))/2; makelist(num(T(n, 1)), n, 1, 10); \\ Vladimir Kruchinin, Nov 08 2011

CROSSREFS

Cf. A048603. Apart from signs, the same sequence as A048606.

Sequence in context: A297984 A298633 A298710 * A048606 A033373 A289237

Adjacent sequences:  A048599 A048600 A048601 * A048603 A048604 A048605

KEYWORD

frac,sign,nice

AUTHOR

Winston C. Yang (yang(AT)math.wisc.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 17:52 EST 2020. Contains 338880 sequences. (Running on oeis4.)