login
A048502
a(n) = 2^(n-1)*(9*n-16)+9.
1
1, 2, 13, 53, 169, 473, 1225, 3017, 7177, 16649, 37897, 85001, 188425, 413705, 901129, 1949705, 4194313, 8978441, 19136521, 40632329, 85983241, 181403657, 381681673, 801112073, 1677721609, 3506438153, 7314866185, 15233712137, 31675383817, 65766686729
OFFSET
0,2
FORMULA
a(n) = T(8, n), array T given by A048494.
a(n) = 2^(n-1)*(9n-16)+9 = A000079(n-1)*A017185(n-2)+9. - Wesley Ivan Hurt, Dec 04 2013
G.f.: (1-3*x+11*x^2) / ((1-x)*(1-2*x)^2). - Colin Barker, Aug 24 2016
MAPLE
A048502:=n->2^(n-1)*(9*n-16)+9; seq(A048502(n), n=0..30); # Wesley Ivan Hurt, Dec 04 2013
MATHEMATICA
Table[2^(n-1)*(9n-16)+9, {n, 0, 30}] (* Wesley Ivan Hurt, Dec 04 2013 *)
PROG
(Magma) [2^(n-1)*(9*n-16)+9 : n in [0..30]]; // Vincenzo Librandi, Sep 25 2011
(PARI) Vec((1-3*x+11*x^2)/((1-x)*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Aug 24 2016
CROSSREFS
Cf. A048494.
Sequence in context: A037383 A034476 A030517 * A177077 A144235 A180041
KEYWORD
nonn,easy
EXTENSIONS
Formula and more terms from Ralf Stephan, Jan 15 2004
STATUS
approved