login
A048486
Values of k for which the earliest maximal value of A001221(C(k,j)) is j = floor(k/2).
3
1, 2, 3, 4, 5, 8, 12, 13, 16, 17, 40, 41, 64, 65, 107, 108, 132, 133, 219, 220, 288, 340, 341, 400, 401, 419, 420, 421, 556, 576, 608, 651, 660, 661, 804, 809, 810, 811, 936, 937, 1020, 1054, 1055, 1063, 1255, 1256, 1307, 1308, 1368, 1408, 1409, 1555, 1556
OFFSET
1,2
COMMENTS
k is in the sequence if omega(C(k,j)) is a maximum for j = floor(k/2) and not a maximum for j < floor(k/2).
EXAMPLE
If n = 16 and k = 0, ..., 16 then r = 0,1,3,3,4,4,4,4,5,4,4,4,4,3,3,1,0. The maximum of A001221(C(16,k)) values, i.e. 5 is appears at k = 8, the center. Thus 16 is in this sequence.
MATHEMATICA
Select[Range@ 500, Function[n, Min@ MaximalBy[Range[0, n], PrimeNu@ Binomial[n, #] &] == Floor[n/2]]] (* Michael De Vlieger, Aug 01 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michael De Vlieger, Aug 01 2017
Title clarified by Sean A. Irvine, Jun 18 2021
STATUS
approved