login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048441 Take the first n numbers written in base 9, concatenate them, then convert from base 9 to base 10. 16
1, 11, 102, 922, 8303, 74733, 672604, 6053444, 490328973, 39716646823, 3217048392674, 260580919806606, 21107054504335099, 1709671414851143033, 138483384602942585688, 11217154152838349440744, 908589486379906304700281, 73595748396772410680722779 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The first two primes in this sequence occur for n = 2 (a(2) = 11) and n = 14 (a(14) = 1709671414851143033) (email from Kurt Foster, Oct 24 2015). - N. J. A. Sloane, Oct 25 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

EXAMPLE

a(9) = (1)(2)(3)(4)(5)(6)(7)(8)(10) = 1234567810_9 = 490328973.

MATHEMATICA

If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 9]]]; Table[AppendTo[n, IntegerDigits[w, 9]]; n=Flatten[n]; FromDigits[n, 9], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)

f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 9], 9]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

PROG

(PARI) { cuo=0;

for(ixp=1, 18,

casi = ixp; cvst=0;

while(casi != 0,

cvd = casi%9; cvst=10*cvst + cvd + 1; casi = (casi - cvd) / 9 );

while(cvst !=0, ptch = cvst%10;

cuo=cuo*9+ptch-1; cvst = (cvst - ptch) / 10 ); print1(cuo, ", "))}

\\ Douglas Latimer, Apr 27 2012

(MAGMA) [n eq 1 select 1 else Self(n-1)*9^(1+Ilog(9, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012

CROSSREFS

Cf. A014832, A055150.

Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: this sequence, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Sequence in context: A037609 A055150 A014832 * A099294 A081552 A156948

Adjacent sequences:  A048438 A048439 A048440 * A048442 A048443 A048444

KEYWORD

nonn,base,easy

AUTHOR

Patrick De Geest, May 15 1999

EXTENSIONS

More terms from Douglas Latimer, May 10 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 11:18 EDT 2019. Contains 328257 sequences. (Running on oeis4.)