login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048278 Positive numbers n such that the numbers binomial(n,k) are squarefree for all k = 0..n. 13

%I #74 Apr 26 2016 11:25:12

%S 1,2,3,5,7,11,23

%N Positive numbers n such that the numbers binomial(n,k) are squarefree for all k = 0..n.

%C It has been shown by Granville and Ramaré that the sequence is complete.

%C These are all the positive integers m that, when m is represented in binary, contain no composites represented in binary as substrings. - _Leroy Quet_, Oct 30 2008

%C This is a number-theoretic sequence, so it automatically assumes that n is positive. To quote Granville and Ramaré, "From Theorem 2 it is evident that there are only finitely many rows of Pascal's Triangle in which all of the entries are squarefree. In section 2 we show that this only occurs in rows 1, 2, 3, 5, 7, 11 and 23 (a result proved by Erdős long ago)." - _N. J. A. Sloane_, Mar 06 2014

%C See also comment in A249441. - _Vladimir Shevelev_, Oct 29 2014

%C This sequence is equivalent to: Positive integers n such that Fibonacci(n+1) divides n!. This comment depends on the finiteness of A019532. - _Altug Alkan_, Mar 31 2016

%H A. Granville and O. Ramaré, <a href="http://www.dms.umontreal.ca/~andrew/PDF/ramare.pdf">Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients</a>, Mathematika 43 (1996), 73-107, <a href="http://dx.doi.org/10.1112/S0025579300011608">[DOI]</a>.

%H H. N. Ramaswamy and R. Siddaramu, <a href="http://eprints.uni-mysore.ac.in/id/eprint/10232">On the Stufe, unit Stufe and Pythagoras number of the ring of integers modulo n</a>, Adv. Stud. Contemp. Math. (Kyungshang) 20:3 (2010), pp. 373-388.

%F Integers n>0 in set difference between union (A000225, A055010) and A249452. - _Vladimir Shevelev_, Oct 30 2014

%F a(n) = A018253(n+1) - 1. - _Altug Alkan_, Apr 26 2016

%e n=11: C[11,k] = 1, 11, 55, 165, 330, 462, ... are all squarefree (or 1).

%p select(n -> andmap(t -> numtheory:-issqrfree(binomial(n,t)),[$1..floor(n/2)]),[$1..100]); # _Robert Israel_, Oct 29 2014

%t Do[m = Prime[n]; k = 2; While[k < m/2 + .5 && Union[ Transpose[ FactorInteger[ Binomial[m, k]]] [[2]]] [[ -1]] < 2, k++ ]; If[k >= m/2 + .5, Print[ Prime[n]]], {n, 1, PrimePi[10^6]} ]

%t Select[Range[10^3], Function[n, AllTrue[Binomial[n, Range@ n], SquareFreeQ]]] (* _Michael De Vlieger_, Apr 01 2016, Version 10 *)

%o (PARI) is(n)=for(k=0,n\2,if(!issquarefree(binomial(n,k)),return(0))); 1 \\ _Charles R Greathouse IV_, Mar 06 2014

%Y Cf. A005117, A046098, A048276, A048277, A048279, A249441.

%Y Cf. A000225, A055010, A249452.

%Y Cf. A019532.

%K nonn,fini,full

%O 1,2

%A _Labos Elemer_

%E Edited by _Ralf Stephan_, Aug 03 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 04:56 EDT 2024. Contains 371767 sequences. (Running on oeis4.)