This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048276 a(n) = number of squarefree numbers among C(n,k), k=0..n. 6
 1, 2, 3, 4, 3, 6, 6, 8, 3, 2, 6, 12, 4, 10, 12, 14, 2, 6, 2, 8, 8, 10, 12, 24, 4, 4, 8, 2, 4, 12, 6, 12, 2, 4, 8, 8, 2, 8, 14, 12, 4, 12, 14, 26, 16, 8, 20, 42, 2, 2, 2, 4, 6, 18, 4, 6, 2, 6, 10, 22, 8, 26, 40, 8, 2, 4, 6, 8, 8, 16, 12, 18, 2, 8, 18, 4, 6, 14, 18, 34, 2, 2, 4, 6, 4, 10, 12, 16, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The only odd numbers are at n = 0, 2, 4, and 8. So this sequence is essentially twice A238337. - T. D. Noe, Mar 07 2014 LINKS T. D. Noe, Table of n, a(n) for n = 0..5000 FORMULA a(n) = n+1-A048277(n). - R. J. Mathar, Jan 18 2018 EXAMPLE If n=20, then C(20, k) is squarefree for k = 0,2,4,8,12,16,18,20, that is, for 8 cases of k, so a(20)=8. MAPLE A048276 := proc(n)     local a, k ;     a := 0 ;     for k from 0 to n do         if issqrfree(binomial(n, k)) then             a := a+1 ;         end if;     end do:     a ; end proc: seq(A048276(n), n=0..40) ; # R. J. Mathar, Jan 18 2018 MATHEMATICA Table[Length[Select[Binomial[n, Range[0, n]], SquareFreeQ[#] &]], {n, 0, 100}] PROG (PARI) a(n) = sum(k=0, n, issquarefree(binomial(n, k))); \\ Michel Marcus, Dec 19 2013 CROSSREFS Cf. A005117, A046098, A048277, A238337. Sequence in context: A074792 A321168 A318510 * A127463 A076618 A116550 Adjacent sequences:  A048273 A048274 A048275 * A048277 A048278 A048279 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 11:15 EDT 2019. Contains 327129 sequences. (Running on oeis4.)