login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047994 Unitary totient (or unitary phi) function uphi(n). 82

%I

%S 1,1,2,3,4,2,6,7,8,4,10,6,12,6,8,15,16,8,18,12,12,10,22,14,24,12,26,

%T 18,28,8,30,31,20,16,24,24,36,18,24,28,40,12,42,30,32,22,46,30,48,24,

%U 32,36,52,26,40,42,36,28,58,24,60,30,48,63,48,20,66,48,44,24,70

%N Unitary totient (or unitary phi) function uphi(n).

%C Unitary convolution of A076479 and A000027. - _R. J. Mathar_, Apr 13 2011

%C Multiplicative with a(p^e) = p^e - 1. - _N. J. A. Sloane_, Apr 30 2013

%H T. D. Noe, <a href="/A047994/b047994.txt">Table of n, a(n) for n = 1..10000</a>

%H Eckford Cohen, <a href="http://dx.doi.org/10.1007/BF01180473">Arithmetical functions associated with the unitary divisors of an integer</a>, Math. Zeitschr. 74 (1960) 66-80

%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Unitarism and infinitarism</a>.

%H Steven R. Finch, <a href="/A007947/a007947.pdf">Unitarism and Infinitarism</a>, February 25, 2004. [Cached copy, with permission of the author]

%H M. Lal, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0335419-3">Iterates of the unitary totient function</a>, Math. Comp., 28 (1974), 301-302.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1106.4038">Survey of Dirichlet Series of Multiplicative Arithmetic Functions</a>, arXiv:1106.4038 [math.NT], 2011, Remark 43.

%H L. Toth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Toth2/toth5.html">On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function</a>, JIS 12 (2009) 09.5.2

%H L. Toth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Toth/toth10.html">A survey of gcd-sum functions</a>, J. Int. Seq. 13 (2010) # 10.8.1

%F If n = Product p_i^e_i, uphi(n) = Product (p_i^e_i - 1).

%F a(n) = A000010(n)*A000203(A003557(n))/A003557(n). - _Velin Yanev_ and _Charles R Greathouse IV_, Aug 23 2017

%e a(12) = a(3)*a(4) = 2*3 = 6.

%p A047994 := proc(n)

%p local a;

%p a := 1 ;

%p for f in ifactors(n)[2] do

%p a := a*(op(1,f)^op(2,f)-1) ;

%p end do:

%p a ;

%p end proc:

%p seq(A047994(n),n=1..20) ; # _R. J. Mathar_, Dec 22 2011

%t uphi[n_] := (Times @@ (Table[ #[[1]]^ #[[2]] - 1, {1} ] & /@ FactorInteger[n]))[[1]]; Table[ uphi[n], {n, 2, 75}] (* _Robert G. Wilson v_, Sep 06 2004 *)

%t uphi[n_] := If[n==1, 1, Product[{p, e} = pe; p^e-1, {pe, FactorInteger[n]}] ]; Array[uphi, 80] (* _Jean-Fran├žois Alcover_, Nov 17 2018 *)

%o (PARI) A047994(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1);

%o (Haskell)

%o a047994 n = f n 1 where

%o f 1 uph = uph

%o f x uph = f (x `div` sppf) (uph * (sppf - 1)) where sppf = a028233 x

%o -- _Reinhard Zumkeller_, Aug 17 2011

%Y Cf. A049865, A003271, A028233.

%K nonn,easy,nice,mult

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Jud McCranie_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 13:03 EST 2019. Contains 329336 sequences. (Running on oeis4.)