The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047994 Unitary totient (or unitary phi) function uphi(n). 100
 1, 1, 2, 3, 4, 2, 6, 7, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 14, 24, 12, 26, 18, 28, 8, 30, 31, 20, 16, 24, 24, 36, 18, 24, 28, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 26, 40, 42, 36, 28, 58, 24, 60, 30, 48, 63, 48, 20, 66, 48, 44, 24, 70 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Unitary convolution of A076479 and A000027. - R. J. Mathar, Apr 13 2011 Multiplicative with a(p^e) = p^e - 1. - N. J. A. Sloane, Apr 30 2013 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Zeitschr. 74 (1960) 66-80 S. R. Finch, Unitarism and infinitarism. Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author] M. Lal, Iterates of the unitary totient function, Math. Comp., 28 (1974), 301-302. R. J. Mathar, Survey of Dirichlet Series of Multiplicative Arithmetic Functions, arXiv:1106.4038 [math.NT], 2011, Remark 43. L. Toth, On the Bi-Unitary Analogues of Euler's Arithmetical Function and the Gcd-Sum Function, JIS 12 (2009) 09.5.2. L. Toth, A survey of gcd-sum functions, J. Int. Seq. 13 (2010) # 10.8.1. FORMULA If n = Product p_i^e_i, uphi(n) = Product (p_i^e_i - 1). a(n) = A000010(n)*A000203(A003557(n))/A003557(n). - Velin Yanev and Charles R Greathouse IV, Aug 23 2017 From Amiram Eldar, May 29 2020: (Start) a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(d) * n/d. Sum_{d|n, gcd(d, n/d) = 1} a(d) = n. a(n) >= phi(n) = A000010(n), with equality if and only if n is squarefree (A005117). (End) Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3). - Vaclav Kotesovec, Jun 15 2020 EXAMPLE a(12) = a(3)*a(4) = 2*3 = 6. MAPLE A047994 := proc(n)     local a;     a := 1 ;     for f in ifactors(n)[2] do         a := a*(op(1, f)^op(2, f)-1) ;     end do:     a ; end proc: seq(A047994(n), n=1..20) ; # R. J. Mathar, Dec 22 2011 MATHEMATICA uphi[n_] := (Times @@ (Table[ #[[1]]^ #[[2]] - 1, {1} ] & /@ FactorInteger[n]))[[1]]; Table[ uphi[n], {n, 2, 75}] (* Robert G. Wilson v, Sep 06 2004 *) uphi[n_] := If[n==1, 1, Product[{p, e} = pe; p^e-1, {pe, FactorInteger[n]}] ]; Array[uphi, 80] (* Jean-François Alcover, Nov 17 2018 *) PROG (PARI) A047994(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020 (Haskell) a047994 n = f n 1 where    f 1 uph = uph    f x uph = f (x `div` sppf) (uph * (sppf - 1)) where sppf = a028233 x -- Reinhard Zumkeller, Aug 17 2011 CROSSREFS Cf. A000010, A000203, A001221, A003557, A049865, A003271, A028233, A076479. Sequence in context: A308085 A178970 A172054 * A193024 A153038 A324911 Adjacent sequences:  A047991 A047992 A047993 * A047995 A047996 A047997 KEYWORD nonn,easy,nice,mult AUTHOR EXTENSIONS More terms from Jud McCranie STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 01:49 EST 2020. Contains 338603 sequences. (Running on oeis4.)