login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047971 Triangle of coefficients of Gaussian polynomials [ n+3,3 ]. 5
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 5, 7, 7, 8, 8, 8, 7, 7, 5, 4, 3, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

a(n) as illustrated is related to the following sequences: The row sum values are A001400. The column sums are A000292. The row lengths are the stuttering sequence A037915 (stutter values in A016777). The column lengths are the sequence A016777. The max values in each column are A001971. - Alford Arnold, Aug 16 2004

The Gaussian polynomial (or Gaussian binomial) [n,3]_q is an example of a q-binomial coefficient (see the link) and may be defined for n >= 3 by [n,3]_q = ([n]_q * [n-1]_q * [n-2]_q)/([1]_q * [2]_q * [3]_q), where [n]_q := q^n - 1. The first few values are: [3,3]_q = 1; [4,3]_q = 1 + q + q^2 + q^3; [5,3]_q = 1 + q + 2q^2 + 2q^3 + 2q^4 + q^5 + q^6. - Peter Bala, Sep 23 2007

The entry a(p,w), p >= 0, w = 0,1,...,3*p, of this irregular triangle is the number of nonnegative solutions of m_0 + m_1 + m_2 + m_3 = p and 1*m_1 + 2*m_2 + 3*m_3 = w. See the Hawkins reference given in A008967, p. 264, (4,7),(4.8), concerning Cayley's counting problem.  N(p,3,w) there equals a(p,w). The o.g.f. has been given in the formula section by Peter Bala.  See also the Cayley reference given in A008967, p. 110, 35. with m = 3, Theta = p and q = w. - Wolfdieter Lang, Dec 02 2012

The entry a(p,w) p >= 0, w = 0,1,...,3*p, of this array gives the number of partitions of w into at most p parts, each at most 3. This follows from the preceding comment with the two Diophantine equations. From Andrews, p. 33 and p. 35, a(p,w) (called there p(N,M,n) with N=p, M=3, n=w) gives also the number of partitions of w into at most 3 parts, each at most p. This is in accordance with the symmetry of the q-binomials [p+3,p] = [p+3,3]. - Wolfdieter Lang, Dec 04  2012

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 242.

LINKS

Table of n, a(n) for n=0..69.

Eric Weisstein's World of Mathematics, q-Binomial Coefficient.

FORMULA

O.g.f.: 1/((1-x)(1-qx)(1-q^2x)(1-q^3x)) = 1 + x(1 + q + q^2 + q^3) + x^2(1 + q + 2q^2 + 2q^3 + 2q^4 + q^5 + q^6) + .... - Peter Bala, Sep 23 2007

EXAMPLE

The table a(p,w) = [q^w][p+3,3]_q starts:

p\w 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ...

0:  1

1:  1  1  1  1

2:  1  1  2  2  2  1  1

3:  1  1  2  3  3  3  3  2  1  1

4:  1  1  2  3  4  4  5  4  4  3  2  1  1

5:  1  1  2  3  4  5  6  6  6  6  5  4  3  2  1  1

6:  1  1  2  3  4  5  7  7  8  8  8  7  7  5  4  3  2  1  1

... Reformatted and extended by Wolfdieter Lang, Dec 04 2012

Partition example: Row p=2 is 1 1 2 2 2 1 1 because there are ten solution for (m_0, m_1, m_2, m_3) of the first equation given in a comment above, namely (2,0,0,0), (0,2,0,0), (0,0,2,0), (0,0,0,2), (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1) and (0,0,1,1) which have the w = 1*m_1 + 2*m_2 + 3*m_3 values 0, 2, 4, 6, 1, 2, 3, 3, 4 and 5, respectively. Therefore there are 1, 1, 2, 2, 2, 1, 1 solutions for w = 0, 1, 2, 3, 4, 5, 6, respectively. - Wolfdieter Lang, Dec 03 2012

a(4,5) = 4 because there are 4 partitions of 5 with 1, 2, 3  or 4 parts, each being <= 3, namely all partitions of 5 excluding 5, 14 and 11111. There are also 4 partitions of 5 with 1, 2, or 3 parts, each being <= 4, namely all partitions of 5 excluding 5, 1112 and 11111. - Wolfdieter Lang, Dec 04 2012

The table may also be arranged as follows (see the Alford Arnold comment above):

1

..1

..1..1

..1..1..1

..1..2..1..1

.....2..2..1..1

.....2..3..2..1..1

.....1..3..3..2..1..1

MATHEMATICA

nmax = 6; se = Series[ 1/Product[1 - q^k*x, {k, 0, 3}], {x, 0, nmax}]; row[n_] := CoefficientList[ SeriesCoefficient[se, n], q]; Flatten[ Table[ row[n], {n, 0, nmax}]] (* Jean-Fran├žois Alcover, Dec 19 2011 *)

CROSSREFS

Cf. A008967.

Cf. A005400.

Sequence in context: A176508 A241492 A227739 * A029432 A073426 A232439

Adjacent sequences:  A047968 A047969 A047970 * A047972 A047973 A047974

KEYWORD

nonn,easy,nice,tabf

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 22:55 EST 2020. Contains 331129 sequences. (Running on oeis4.)