login
A047924
a(n) = B_{A_n+1}+1, where A_n = floor(n*phi) = A000201(n), B_n = floor(n*phi^2) = A001950(n) and phi is the golden ratio.
3
3, 6, 11, 14, 19, 24, 27, 32, 35, 40, 45, 48, 53, 58, 61, 66, 69, 74, 79, 82, 87, 90, 95, 100, 103, 108, 113, 116, 121, 124, 129, 134, 137, 142, 147, 150, 155, 158, 163, 168, 171, 176, 179, 184, 189, 192, 197, 202, 205, 210, 213, 218, 223, 226, 231, 234, 239
OFFSET
0,1
COMMENTS
2nd column of array in A038150.
Apart from the first term also the second column of A126714; see also A223025. - Casey Mongoven, Mar 11 2013
REFERENCES
Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.
LINKS
A. S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
A. S. Fraenkel, Arrays, numeration systems and Frankenstein games, Theoret. Comput. Sci. 282 (2002), 271-284; preprint.
Clark Kimberling, The first column of an interspersion, The Fibonacci Quarterly 32 (1994), 301-315.
MAPLE
A001950 := proc(n)
local phi;
phi := (1+sqrt(5))/2 ;
floor(n*phi^2) ;
end proc:
A000201 := proc(n)
local phi;
phi := (1+sqrt(5))/2 ;
floor(n*phi) ;
end proc:
A047924 := proc(n)
1+A001950(1+A000201(n)) ;
end proc: # R. J. Mathar, Mar 20 2013
MATHEMATICA
A[n_] := Floor[n*GoldenRatio]; B[n_] := Floor[n*GoldenRatio^2]; a[n_] := B[A[n]+1]+1; Table[a[n], {n, 0, 56}] (* Jean-François Alcover, Feb 11 2014 *)
PROG
(Python)
from mpmath import *
mp.dps=100
import math
def A(n): return int(math.floor(n*phi))
def B(n): return int(math.floor(n*phi**2))
def a(n): return B(A(n) + 1) + 1 # Indranil Ghosh, Apr 25 2017
(Python)
from math import isqrt
def A047924(n): return ((m:=(n+isqrt(5*n**2)>>1)+1)+isqrt(5*m**2)>>1)+m+1 # Chai Wah Wu, Aug 25 2022
CROSSREFS
Cf. A007066.
Sequence in context: A246976 A189380 A047398 * A267519 A200182 A342173
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Naohiro Nomoto, Jun 08 2001
New description from Aviezri S. Fraenkel, Aug 03 2007
STATUS
approved