login
A047854
a(n) = T(6,n), array T given by A047848.
6
1, 2, 11, 92, 821, 7382, 66431, 597872, 5380841, 48427562, 435848051, 3922632452, 35303692061, 317733228542, 2859599056871, 25736391511832, 231627523606481, 2084647712458322, 18761829412124891, 168856464709124012, 1519708182382116101, 13677373641439044902, 123096362772951404111
OFFSET
0,2
COMMENTS
n-th difference of a(n), a(n-1), ..., a(0) is 8^(n-1) for n=1, 2, 3, ...
Also, the cogrowth sequence of the 16-element group D4 X C2 = <S,T,U | S^4, T^2, U^2, (ST)^2, [S,T], [U,T]>. - Sean A. Irvine, Nov 10 2024
FORMULA
a(n) = (9^n + 7)/8. - Ralf Stephan, Feb 14 2004
From Philippe Deléham, Oct 06 2009: (Start)
a(0) = 1, a(1) = 2, a(n) = 10*a(n-1) - 9*a(n-2) for n > 1.
G.f.: (1 - 8*x)/(1 - 10*x + 9*x^2). (End)
a(n) = 9*a(n-1) - 7 (with a(0)=1). - Vincenzo Librandi, Aug 06 2010
exp(x)*(exp(8*x) + 7)/8. - Elmo R. Oliveira, Aug 29 2024
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+1 od: seq(a[n]+1, n=0..17); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
a = {}; ZZ = 1; Do[ZZ = ZZ + 3^(2x); AppendTo[a, ZZ], {x, 0, 17}]; a (* Zerinvary Lajos, Apr 03 2007 *)
CROSSREFS
Cf. A047848.
Sequence in context: A094955 A352292 A143870 * A366402 A222080 A122708
KEYWORD
nonn,easy,changed
EXTENSIONS
a(18)-a(22) from Elmo R. Oliveira, Aug 29 2024
STATUS
approved