login
A047831
a(n) = Product_{i=1..n} ((i+5)*(i+6)*(i+7)*(i+8)*(i+9))/(i*(i+1)*(i+2)*(i+3)*(i+4)).
2
1, 252, 19404, 731808, 16818516, 267227532, 3184461423, 30107635272, 235234907908, 1566039386912, 9095857138368, 46960429261824, 218772384397632, 931020034054176, 3656383418054268, 13365232267026024, 45800747571406905, 148055097314224100
OFFSET
0,2
COMMENTS
Number of tilings of a <5,n,5> hexagon.
REFERENCES
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
LINKS
O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241. [Annotated scanned copy]
FORMULA
a(n) = C(n+5,n+4)*C(n+6,n+3)*C(n+7,n+2)*C(n+8,n+1)*C(n+9,n)/(140*5!). - Zerinvary Lajos, May 29 2007
MAPLE
seq(binomial(n+5, n+4)*binomial(n+6, n+3)*binomial(n+7, n+2)*binomial(n+8, n+1)*binomial(n+9, n)/(140*5!), n=0..17); # Zerinvary Lajos, May 29 2007
MATHEMATICA
Table[Product[Times@@(i+Range[5, 9])/Times@@(i+Range[0, 4]), {i, n}], {n, 0, 20}] (* Harvey P. Dale, Jan 30 2015 *)
PROG
(PARI) a(n) = prod(k=1, 5, binomial(n+k+4, n-k+5))/(140*5!); \\ Seiichi Manyama, Apr 02 2021
CROSSREFS
Fifth row of array A103905.
Sequence in context: A329755 A109924 A281032 * A076013 A180886 A078263
KEYWORD
nonn
EXTENSIONS
Definition corrected by Daniel Soll (soll(AT)mathematik.uni-marburg.de), Aug 31 2004
STATUS
approved