login
A047798
a(n) = Sum_{k=0..n} C(n,k)*Stirling2(n,k)^2.
2
1, 1, 3, 31, 443, 9006, 241147, 7956579, 318973867, 15061651528, 824029357046, 51526959899570, 3636995712432667, 287053182699020609, 25126145438688593769, 2421761360666327615911, 255466264644678162575691, 29336098320197429601856772
OFFSET
0,3
LINKS
MAPLE
seq(add(binomial(n, k)*stirling2(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
MATHEMATICA
Table[Sum[Binomial[n, k]*StirlingS2[n, k]^2, {k, 0, n}], {n, 0, 20}] (* G. C. Greubel, Aug 07 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k)*stirling(n, k, 2)^2)};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
(Magma) [(&+[Binomial(n, k)*StirlingSecond(n, k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
(Sage) [sum(binomial(n, k)*stirling_number2(n, k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
(GAP) List([0..20], n-> Sum([0..n], k-> Binomial(n, k)*Stirling2(n, k)^2 )); # G. C. Greubel, Aug 07 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved