login
A047797
a(n) = Sum_{k=0..n} Stirling2(n,k)^2.
7
1, 1, 2, 11, 87, 952, 13513, 237113, 5016728, 125121009, 3615047527, 119384499720, 4455637803543, 186152008588691, 8636436319397292, 441871067839416319, 24781002306869712365, 1515279889256750470086, 100546673139756241189021
OFFSET
0,3
COMMENTS
If S is the lower matrix of Stirling numbers of the second kind, this sequence (without the first term 1) is the diagonal of the matrix S.Transpose[S]. - Sergio Falcon, May 02 2007
LINKS
MAPLE
seq(add(Stirling2(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
MATHEMATICA
Table[Sum[StirlingS2[n, k]^2, {k, 0, n}], {n, 0, 20}] (* Emanuele Munarini, Jul 01 2011 *)
PROG
(Maxima) makelist(sum(stirling2(n, k)^2, k, 0, n), n, 0, 20); # Emanuele Munarini, Jul 01 2011
(PARI) {a(n) = sum(k=0, n, stirling(n, k, 2)^2)};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
(Magma) [(&+[StirlingSecond(n, k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
(Sage) [sum(stirling_number2(n, k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
(GAP) List([0..20], n-> Sum([0..n], k-> Stirling2(n, k)^2 )); # G. C. Greubel, Aug 07 2019
CROSSREFS
KEYWORD
nonn
STATUS
approved