This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047786 a(n) = (9*n^4 + 4*n^3 - n)/2. 2
 0, 6, 87, 417, 1278, 3060, 6261, 11487, 19452, 30978, 46995, 68541, 96762, 132912, 178353, 234555, 303096, 385662, 484047, 600153, 735990, 893676, 1075437, 1283607, 1520628, 1789050, 2091531, 2430837, 2809842, 3231528, 3698985, 4215411, 4784112, 5408502 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31 (see p. 30). B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31. [Annotated scanned copy] Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1). FORMULA O.g.f.: 3*x*(2 + 19*x + 14*x^2 + x^3)/(1-x)^5. - R. J. Mathar, Feb 26 2008 E.g.f.: x*(12 + 75*x + 58*x^2 + 9*x^3)*exp(x)/2. - Robert Israel, May 29 2016 MATHEMATICA Table[(9n^4+4n^3-n)/2, {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 6, 87, 417, 1278}, 30] (* Harvey P. Dale, May 26 2016 *) PROG (MAGMA) [(9*n^4+4*n^3-n)/2: n in [0..40]]; // Vincenzo Librandi, May 29 2016 (PARI) {a(n) = n*(9*n^3 +4*n^2 -1)/2}; \\ G. C. Greubel, May 17 2019 (Sage) [n*(9*n^3 +4*n^2 -1)/2 for n in (0..30)] # G. C. Greubel, May 17 2019 (GAP) List([0..30], n-> n*(9*n^3 +4*n^2 -1)/2) # G. C. Greubel, May 17 2019 CROSSREFS Sequence in context: A091881 A004701 A177570 * A181271 A249929 A289394 Adjacent sequences:  A047783 A047784 A047785 * A047787 A047788 A047789 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 17:27 EDT 2019. Contains 328022 sequences. (Running on oeis4.)