%I
%S 1,13,78,286,702,1131,845,1300,5928,11583,13715,5915,15834,
%T 47477,73658,71201,20436,79391,198796,280345,258557,92807,200850,
%U 536341,773916,768222,432705,204477,979628,1626196,1856569,1471184,452192
%N Expand {Product_{j>=1} (1(x)^j)  1}^13 in powers of x.
%H Robert Israel, <a href="/A047638/b047638.txt">Table of n, a(n) for n = 13..10000</a>
%H H. Gupta, <a href="https://doi.org/10.1112/jlms/s139.1.433">On the coefficients of the powers of Dedekind's modular form</a>, J. London Math. Soc., 39 (1964), 433440.
%H H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy)
%p N:= 100: # to get a(13)..a(N)
%p G:= (mul(1(x)^j,j=1..N)1)^13:
%p S:= series(G,x,N+1):
%p seq(coeff(S,x,n),n=13..N); # _Robert Israel_, Aug 08 2018
%K sign
%O 13,2
%A _N. J. A. Sloane_
%E Definition corrected by _Robert Israel_, Aug 08 2018
