login
Numbers that are congruent to {0, 3, 5, 6, 7} mod 8.
1

%I #15 Sep 08 2022 08:44:57

%S 0,3,5,6,7,8,11,13,14,15,16,19,21,22,23,24,27,29,30,31,32,35,37,38,39,

%T 40,43,45,46,47,48,51,53,54,55,56,59,61,62,63,64,67,69,70,71,72,75,77,

%U 78,79,80,83,85,86,87,88

%N Numbers that are congruent to {0, 3, 5, 6, 7} mod 8.

%H G. C. Greubel, <a href="/A047583/b047583.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).

%F From _Chai Wah Wu_, May 29 2016: (Start)

%F a(n) = a(n-1) + a(n-5) - a(n-6) for n>6.

%F G.f.: x^2*(x^4 + x^3 + x^2 + 2*x + 3)/(x^6 - x^5 - x + 1). (End)

%t LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 3, 5, 6, 7, 8}, 50] (* _G. C. Greubel_, May 29 2016 *)

%o (Magma) [n : n in [0..150] | n mod 8 in [0, 3, 5, 6, 7]]; // _Wesley Ivan Hurt_, May 29 2016

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_