%I #21 Sep 08 2022 08:44:57
%S 0,2,3,4,7,8,10,11,12,15,16,18,19,20,23,24,26,27,28,31,32,34,35,36,39,
%T 40,42,43,44,47,48,50,51,52,55,56,58,59,60,63,64,66,67,68,71,72,74,75,
%U 76,79,80,82,83,84,87,88,90,91,92,95,96,98,99,100,103
%N Numbers that are congruent to {0, 2, 3, 4, 7} mod 8.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F From _Chai Wah Wu_, Jun 10 2016: (Start)
%F a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
%F G.f.: x^2*(x^4 + 3*x^3 + x^2 + x + 2)/(x^6 - x^5 - x + 1). (End)
%F From _Wesley Ivan Hurt_, Jul 28 2016: (Start)
%F a(n) = a(n-5) + 8 for n>5.
%F a(n) = (40*n - 40 - 7*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) - 2*((n+3) mod 5) + 3*((n+4) mod 5))/25.
%F a(5k) = 8k-1, a(5k-1) = 8k-4, a(5k-2) = 8k-5, a(5k-3) = 8k-6, a(5k-4) = 8k-8. (End)
%p A047547:=n->8*floor(n/5)+[(0, 2, 3, 4, 7)][(n mod 5)+1]: seq(A047547(n), n=0..100); # _Wesley Ivan Hurt_, Jul 28 2016
%t Select[Range[0,100], MemberQ[{0, 2, 3, 4, 7}, Mod[#,8]]&] (* _Harvey P. Dale_, Jun 14 2011 *)
%o (Magma) [n : n in [0..150] | n mod 8 in [0, 2, 3, 4, 7]]; // _Wesley Ivan Hurt_, Jul 28 2016
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_