%I #26 Oct 12 2024 09:05:36
%S 1,3,4,5,7,9,11,12,13,15,17,19,20,21,23,25,27,28,29,31,33,35,36,37,39,
%T 41,43,44,45,47,49,51,52,53,55,57,59,60,61,63,65,67,68,69,71,73,75,76,
%U 77,79,81,83,84,85,87,89
%N Numbers that are congruent to {1, 3, 4, 5, 7} mod 8.
%C Determined by final three binary digits of n.
%H Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, <a href="https://doi.org/10.7546/nntdm.2024.30.3.516-529">The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences</a>, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 528.
%H <a href="/index/Fi#final">Index entries for sequences related to final digits of numbers</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F G.f.: x*(x^2 - x + 1)*(1+x)^3 / ( (x^4 + x^3 + x^2 + x + 1)*(x-1)^2 ). - _R. J. Mathar_, Oct 08 2011
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_