login
Numbers that are congruent to {1, 3, 5, 6} mod 8.
1

%I #20 Sep 08 2022 08:44:57

%S 1,3,5,6,9,11,13,14,17,19,21,22,25,27,29,30,33,35,37,38,41,43,45,46,

%T 49,51,53,54,57,59,61,62,65,67,69,70,73,75,77,78,81,83,85,86,89,91,93,

%U 94,97,99,101,102,105,107,109,110,113,115,117,118,121,123,125

%N Numbers that are congruent to {1, 3, 5, 6} mod 8.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F G.f.: x*(1+2*x+2*x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Dec 07 2011

%F From _Wesley Ivan Hurt_, May 26 2016: (Start)

%F a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.

%F a(n) = (8*n-5-i^(2*n)-i^(-n)-i^n)/4 where i=sqrt(-1).

%F a(2k) = A047398(k), a(2k-1) = A016813(k-1) for k>0. (End)

%F E.g.f.: (4 - cos(x) + (4*x - 2)*sinh(x) + (4*x - 3)*cosh(x))/2. - _Ilya Gutkovskiy_, May 27 2016

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (4-sqrt(2))*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - _Amiram Eldar_, Dec 24 2021

%p A047445:=n->(8*n-5-I^(2*n)-I^(-n)-I^n)/4: seq(A047445(n), n=1..100); # _Wesley Ivan Hurt_, May 26 2016

%t Table[(8n-5-I^(2n)-I^(-n)-I^n)/4, {n, 80}] (* _Wesley Ivan Hurt_, May 26 2016 *)

%o (Magma) [n : n in [0..150] | n mod 8 in [1, 3, 5, 6]]; // _Wesley Ivan Hurt_, May 26 2016

%Y Cf. A016813, A047398.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_