login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046969
Denominators of coefficients in Stirling's expansion for log(Gamma(z)).
4
12, 360, 1260, 1680, 1188, 360360, 156, 122400, 244188, 125400, 5796, 1506960, 300, 93960, 2492028, 505920, 396, 2418179400, 444, 21106800, 3109932, 118680, 25380, 104700960, 6468, 324360, 2283876, 382800, 40356, 201025024200, 732
OFFSET
1,1
COMMENTS
From Lorenzo Sauras Altuzarra, Oct 13 2020: (Start)
Conjecture I: if n > 2, then a(A005382(n))/12 is prime.
Conjecture II: if a(n)/12 is prime, then a(n-1)/12 - (n-1), a(n)/12 - n and a(n+2)/12 - (n+2) are multiples of 6. (End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41.
Thomas Bayes, A letter to John Canton, Phil. Trans. Royal Society London, 53 (1763), 269-271.
C. Impens, Stirling's series made easy, Am. Math. Monthly, 110 (No. 8, 2003), pp. 730-735.
Gergő Nemes, Generalization of Binet's Gamma function formulas, Integral Transforms and Special Functions, 24:8, pp. 597-606, 2013.
Eric Weisstein's World of Mathematics, Stirling's Series
FORMULA
From denominator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2pi)*z^(z-0.5)*exp(-z)*exp(J(z)).
MAPLE
a := n -> denom(bernoulli(2*n)/(2*n*(2*n-1))): # Lorenzo Sauras Altuzarra, Oct 13 2020
MATHEMATICA
Table[ Denominator[ BernoulliB[2n]/(2n(2n - 1))], {n, 31}] (* Robert G. Wilson v, Sep 21 2006 *)
s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^62;
DeleteCases[CoefficientList[s, 1/z], 0] // Denominator (* Jean-François Alcover, Jun 13 2017 *)
PROG
(PARI) a(n)=if(n<1, 0, denominator(bernfrac(2*n)/(2*n)/(2*n-1)))
CROSSREFS
Numerators are given in A046968. Cf. A005382.
Sequence in context: A202926 A134800 A053068 * A074094 A012553 A128043
KEYWORD
frac,nonn,nice
AUTHOR
Douglas Stoll, dougstoll(AT)email.msn.com
EXTENSIONS
More terms from Frank Ellermann, Jun 13 2001
Bayes reference from Henry Bottomley, Jun 03 2003
STATUS
approved