The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046969 Denominators of coefficients in Stirling's expansion for log(Gamma(z)). 4
 12, 360, 1260, 1680, 1188, 360360, 156, 122400, 244188, 125400, 5796, 1506960, 300, 93960, 2492028, 505920, 396, 2418179400, 444, 21106800, 3109932, 118680, 25380, 104700960, 6468, 324360, 2283876, 382800, 40356, 201025024200, 732 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Lorenzo Sauras Altuzarra, Oct 13 2020: (Start) Conjecture I: if n > 2, then a(A005382(n))/12 is prime. Conjecture II: if a(n)/12 is prime, then a(n-1)/12 - (n-1), a(n)/12 - n and a(n+2)/12 - (n+2) are multiples of 6. (End) REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41. L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205 LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..1000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.41. Thomas Bayes, A letter to John Canton, Phil. Trans. Royal Society London, 53 (1763), 269-271. R. P. Brent, Asymptotic approximation of central binomial coefficients with rigorous error bounds, arXiv:1608.04834 [math.NA], 2016. N. Elezovic, Asymptotic Expansions of Central Binomial Coefficients and Catalan Numbers, J. Int. Seq. 17 (2014) # 14.2.1. C. Impens, Stirling's series made easy, Am. Math. Monthly, 110 (No. 8, 2003), pp. 730-735. Gergő Nemes, Generalization of Binet's Gamma function formulas, Integral Transforms and Special Functions, 24:8, pp. 597-606, 2013. Eric Weisstein's World of Mathematics, Stirling's Series FORMULA From denominator of Jk(z) = (-1)^(k-1)*Bk/(((2k)*(2k-1))*z^(2k-1)), so Gamma(z) = sqrt(2pi)*z^(z-0.5)*exp(-z)*exp(J(z)). MAPLE a := n -> denom(bernoulli(2*n)/(2*n*(2*n-1))): # Lorenzo Sauras Altuzarra, Oct 13 2020 MATHEMATICA Table[ Denominator[ BernoulliB[2n]/(2n(2n - 1))], {n, 31}] (* Robert G. Wilson v, Sep 21 2006 *) s = LogGamma[z] + z - (z - 1/2) Log[z] - Log[2 Pi]/2 + O[z, Infinity]^62; DeleteCases[CoefficientList[s, 1/z], 0] // Denominator (* Jean-François Alcover, Jun 13 2017 *) PROG (PARI) a(n)=if(n<1, 0, denominator(bernfrac(2*n)/(2*n)/(2*n-1))) CROSSREFS Numerators are given in A046968. Cf. A005382. Sequence in context: A202926 A134800 A053068 * A074094 A012553 A128043 Adjacent sequences: A046966 A046967 A046968 * A046970 A046971 A046972 KEYWORD frac,nonn,nice AUTHOR Douglas Stoll, dougstoll(AT)email.msn.com EXTENSIONS More terms from Frank Ellermann, Jun 13 2001 Bayes reference from Henry Bottomley, Jun 03 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)