login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046919 Maximal coefficient of polynomial p(n), with p(3)=1, p(n) = (1 - t^(2*n - 4))*(1 - t^(2*n - 3))*p(n - 1)/((1 - t^(n - 3))*(1 - t^n)). 4
1, 1, 3, 8, 24, 73, 227, 734, 2430, 8150, 27718, 95514, 332578, 1168261, 4136477, 14749992, 52925886, 190973410, 692583902, 2523265494, 9231352260, 33901898722, 124940568222, 461938289518, 1713007181342, 6369928427268, 23747917426918, 88747514693530, 332397792962692, 1247582980566935, 4691740496135919, 17676678143316236, 66714895880626460, 252207367615436780 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,3

COMMENTS

a(n) is also the number of partitions of n(n-1)/2 into n (nonzero) parts, none greater than n-2 [Riordan].

REFERENCES

J. Riordan, The number of score sequences in tournaments, J. Combin. Theory, 5 (1968), 87-89. [But the paper seems to contain an error - compare A000571 and A210726].

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 3..50

EXAMPLE

1; 1+t+t^2+t^3+t^4+t^5, t^10+t^9+2*t^8+2*t^7+3*t^6+3*t^5+3*t^4+2*t^3+2*t^2+t+1, ...

MAPLE

p := proc(n)

option remember;

if n = 3 then 1 else

simplify((1-t^(2*n-4))*(1-t^(2*n-3))*p(n-1)/((1-t^(n-3))*(1-t^n)));

fi; end;

for i from 3 to 40 do

lprint(coeff(expand(p(i)), t, i*(i-3)/2)):

od:

MATHEMATICA

p[3] = 1; p[n_] := p[n] = (1 - t^(2*n-4))*(1 - t^(2*n-3))*(p[n-1]/((1 - t^(n-3))*(1 - t^n)))// Simplify // Expand; a[n_] := Coefficient[p[n], t, n*(n-3)/2]; Table[a[n], {n, 3, 40}] (* Jean-Fran├žois Alcover, Aug 01 2013, after Maple *)

CROSSREFS

Cf. A000571, A046918, A210726.

Sequence in context: A006365 A178543 A188175 * A046342 A238977 A182453

Adjacent sequences:  A046916 A046917 A046918 * A046920 A046921 A046922

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Corrected terms and Maple program. - N. J. A. Sloane, May 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 29 03:09 EST 2014. Contains 250479 sequences.