This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046915 Sum of divisors of 10^n. 4
 1, 18, 217, 2340, 24211, 246078, 2480437, 24902280, 249511591, 2497558338, 24987792457, 249938963820, 2499694822171, 24998474116998, 249992370597277, 2499961853010960, 24999809265103951, 249999046325618058, 2499995231628286897 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A072692(n) = A049000(n) + a(n). a(n) is the number of full-dimensional lattices in Z^(n+1) with volume 10. - Álvar Ibeas, Nov 29 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (18,-97,180,-100). FORMULA a(n) = 1/4*(2^(n+1)-1)*(5^(n+1)-1). E.g., a(1) = 1/4*(2^2-1)*(5^2-1) = 18. - Vladeta Jovovic, Dec 18 2001 a(n) = 18*a(n-1)-97*a(n-2)+180*a(n-3)-100*a(n-4). - Colin Barker, Jan 27 2015 G.f.: -(10*x^2-1) / ((x-1)*(2*x-1)*(5*x-1)*(10*x-1)). - Colin Barker, Jan 27 2015 EXAMPLE At 10^1 the factors are 1, 2, 5, 10. The sum of these factors is 18: 1 + 2 + 5 + 10. MATHEMATICA Table[DivisorSigma[1, 10^n], {n, 0, 18}] (* Jayanta Basu, Jun 30 2013 *) PROG (MAGMA) [1/4*(2^(n+1)-1)*(5^(n+1)-1): n in [0..20]]; // Vincenzo Librandi, Oct 03 2011 (PARI) Vec(-(10*x^2-1)/((x-1)*(2*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Jan 27 2015 (PARI) a(n) = sigma(10^n); \\ Altug Alkan, Dec 04 2015 CROSSREFS Cf. A000203 (sigma(n)), A049000, A072692. 10th row of A160870, shifted. Sequence in context: A019757 A021503 A025470 * A041616 A224296 A019333 Adjacent sequences:  A046912 A046913 A046914 * A046916 A046917 A046918 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 11:18 EDT 2019. Contains 328257 sequences. (Running on oeis4.)