login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046915 Sum of divisors of 10^n. 4
1, 18, 217, 2340, 24211, 246078, 2480437, 24902280, 249511591, 2497558338, 24987792457, 249938963820, 2499694822171, 24998474116998, 249992370597277, 2499961853010960, 24999809265103951, 249999046325618058, 2499995231628286897 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A072692(n) = A049000(n) + a(n).

a(n) is the number of full-dimensional lattices in Z^(n+1) with volume 10. - Álvar Ibeas, Nov 29 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (18,-97,180,-100).

FORMULA

a(n) = 1/4*(2^(n+1)-1)*(5^(n+1)-1). E.g., a(1) = 1/4*(2^2-1)*(5^2-1) = 18. - Vladeta Jovovic, Dec 18 2001

a(n) = 18*a(n-1)-97*a(n-2)+180*a(n-3)-100*a(n-4). - Colin Barker, Jan 27 2015

G.f.: -(10*x^2-1) / ((x-1)*(2*x-1)*(5*x-1)*(10*x-1)). - Colin Barker, Jan 27 2015

EXAMPLE

At 10^1 the factors are 1, 2, 5, 10. The sum of these factors is 18: 1 + 2 + 5 + 10.

MATHEMATICA

Table[DivisorSigma[1, 10^n], {n, 0, 18}] (* Jayanta Basu, Jun 30 2013 *)

PROG

(MAGMA) [1/4*(2^(n+1)-1)*(5^(n+1)-1): n in [0..20]]; // Vincenzo Librandi, Oct 03 2011

(PARI) Vec(-(10*x^2-1)/((x-1)*(2*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Jan 27 2015

(PARI) a(n) = sigma(10^n); \\ Altug Alkan, Dec 04 2015

CROSSREFS

Cf. A000203 (sigma(n)), A049000, A072692. 10th row of A160870, shifted.

Sequence in context: A019757 A021503 A025470 * A041616 A224296 A019333

Adjacent sequences:  A046912 A046913 A046914 * A046916 A046917 A046918

KEYWORD

easy,nonn

AUTHOR

Enoch Haga

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 20:39 EDT 2017. Contains 288840 sequences.