login
Clark's triangle: left border = 0 1 1 1..., right border = multiples of 6; other entries = sum of 2 entries above.
4

%I #26 Apr 04 2024 10:16:27

%S 0,1,6,1,7,12,1,8,19,18,1,9,27,37,24,1,10,36,64,61,30,1,11,46,100,125,

%T 91,36,1,12,57,146,225,216,127,42,1,13,69,203,371,441,343,169,48,1,14,

%U 82,272,574,812,784,512,217,54,1,15,96,354,846,1386,1596,1296,729,271,60

%N Clark's triangle: left border = 0 1 1 1..., right border = multiples of 6; other entries = sum of 2 entries above.

%D J. E. Clark, Clark's triangle, Math. Student, 26 (No. 2, 1978), p. 4.

%H Harvey P. Dale, <a href="/A046902/b046902.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClarksTriangle.html">Clark's Triangle</a>.

%F T(2*n, n) = A185080(n), for n >= 1.

%F Sum_{k=0..n} T(n, k) = A100206(n) (row sums).

%F T(n, k) = 6*binomial(n, k-1) + binomial(n-1, k), with T(0, 0) = 0. - _Max Alekseyev_, Nov 06 2005

%F From _G. C. Greubel_, Apr 01 2024: (Start)

%F T(n, n) = A008588(n).

%F T(n, n-1) = A003215(n-1), for n >= 1.

%F Sum_{k=0..n} (-1)^k*T(n, k) = 6*(-1)^n - 6*[n=0] + [n=1].

%F Sum_{k=0..floor(n/2)} T(n-k, k) = 7*Fibonacci(n) - 3*(1 - (-1)^n).

%F Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) = b(n-12) is the repeating pattern {0, 1, -5, -6, 5, 11, 0, -11, -5, 6, 5, -1}. (End)

%e Triangle begins as:

%e 0;

%e 1, 6;

%e 1, 7, 12;

%e 1, 8, 19, 18;

%e 1, 9, 27, 37, 24;

%e 1, 10, 36, 64, 61, 30;

%e 1, 11, 46, 100, 125, 91, 36;

%e 1, 12, 57, 146, 225, 216, 127, 42;

%e 1, 13, 69, 203, 371, 441, 343, 169, 48;

%t Join[{0},Flatten[Table[6*Binomial[n,k-1]+Binomial[n-1,k],{n,10},{k,0,n}]]] (* _Harvey P. Dale_, Nov 04 2012 *)

%o (Haskell)

%o a046902 n k = a046902_tabl !! n !! k

%o a046902_row n = a046902_tabl !! n

%o a046902_tabl = [0] : iterate

%o (\row -> zipWith (+) ([0] ++ row) (row ++ [6])) [1,6]

%o -- _Reinhard Zumkeller_, Dec 26 2012

%o (Magma)

%o A046902:= func< n,k | n eq 0 select 0 else 6*Binomial(n, k-1) + Binomial(n-1, k) >;

%o [A046902(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 01 2024

%o (SageMath)

%o def A046902(n,k): return 6*binomial(n, k-1) + binomial(n-1, k) - int(n==0)

%o flatten([[A046902(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Apr 01 2024

%Y Cf. A100206 (row sums), A185080 (central terms).

%Y Cf. A008588, A003215.

%K nonn,easy,tabl,nice

%O 0,3

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

%E More terms from _Max Alekseyev_, May 12 2005