%I #26 Apr 04 2024 10:16:27
%S 0,1,6,1,7,12,1,8,19,18,1,9,27,37,24,1,10,36,64,61,30,1,11,46,100,125,
%T 91,36,1,12,57,146,225,216,127,42,1,13,69,203,371,441,343,169,48,1,14,
%U 82,272,574,812,784,512,217,54,1,15,96,354,846,1386,1596,1296,729,271,60
%N Clark's triangle: left border = 0 1 1 1..., right border = multiples of 6; other entries = sum of 2 entries above.
%D J. E. Clark, Clark's triangle, Math. Student, 26 (No. 2, 1978), p. 4.
%H Harvey P. Dale, <a href="/A046902/b046902.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClarksTriangle.html">Clark's Triangle</a>.
%F T(2*n, n) = A185080(n), for n >= 1.
%F Sum_{k=0..n} T(n, k) = A100206(n) (row sums).
%F T(n, k) = 6*binomial(n, k-1) + binomial(n-1, k), with T(0, 0) = 0. - _Max Alekseyev_, Nov 06 2005
%F From _G. C. Greubel_, Apr 01 2024: (Start)
%F T(n, n) = A008588(n).
%F T(n, n-1) = A003215(n-1), for n >= 1.
%F Sum_{k=0..n} (-1)^k*T(n, k) = 6*(-1)^n - 6*[n=0] + [n=1].
%F Sum_{k=0..floor(n/2)} T(n-k, k) = 7*Fibonacci(n) - 3*(1 - (-1)^n).
%F Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) = b(n-12) is the repeating pattern {0, 1, -5, -6, 5, 11, 0, -11, -5, 6, 5, -1}. (End)
%e Triangle begins as:
%e 0;
%e 1, 6;
%e 1, 7, 12;
%e 1, 8, 19, 18;
%e 1, 9, 27, 37, 24;
%e 1, 10, 36, 64, 61, 30;
%e 1, 11, 46, 100, 125, 91, 36;
%e 1, 12, 57, 146, 225, 216, 127, 42;
%e 1, 13, 69, 203, 371, 441, 343, 169, 48;
%t Join[{0},Flatten[Table[6*Binomial[n,k-1]+Binomial[n-1,k],{n,10},{k,0,n}]]] (* _Harvey P. Dale_, Nov 04 2012 *)
%o (Haskell)
%o a046902 n k = a046902_tabl !! n !! k
%o a046902_row n = a046902_tabl !! n
%o a046902_tabl = [0] : iterate
%o (\row -> zipWith (+) ([0] ++ row) (row ++ [6])) [1,6]
%o -- _Reinhard Zumkeller_, Dec 26 2012
%o (Magma)
%o A046902:= func< n,k | n eq 0 select 0 else 6*Binomial(n, k-1) + Binomial(n-1, k) >;
%o [A046902(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 01 2024
%o (SageMath)
%o def A046902(n,k): return 6*binomial(n, k-1) + binomial(n-1, k) - int(n==0)
%o flatten([[A046902(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Apr 01 2024
%Y Cf. A100206 (row sums), A185080 (central terms).
%Y Cf. A008588, A003215.
%K nonn,easy,tabl,nice
%O 0,3
%A _N. J. A. Sloane_
%E More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
%E More terms from _Max Alekseyev_, May 12 2005