This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046901 a(n) = a(n-1) - n if a(n-1) > n, else a(n) = a(n-1) + n. 14
 1, 3, 6, 2, 7, 1, 8, 16, 7, 17, 6, 18, 5, 19, 4, 20, 3, 21, 2, 22, 1, 23, 46, 22, 47, 21, 48, 20, 49, 19, 50, 18, 51, 17, 52, 16, 53, 15, 54, 14, 55, 13, 56, 12, 57, 11, 58, 10, 59, 9, 60, 8, 61, 7, 62, 6, 63, 5, 64, 4, 65, 3, 66, 2, 67, 1, 68, 136, 67, 137 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Variation (1) on Recamán's sequence A005132. a(A134931(n-1)) = 1. - Reinhard Zumkeller, Jan 31 2013 LINKS N. J. A. Sloane, First 10000 terms Nick Hobson, Python program for this sequence Kival Ngaokrajang, scatter plot in log-log scale looks, for both this sequence and A211346. FORMULA This is a concatenation S_0, S_1, S_2, ... where S_i = [b_0, b_1, ..., b_{k-1}], k=5*3^i, with b_0 = 1, b_{2j} = k+j, b_{2j+1} = (k+1)/2-j. E.g., S_0 = [1, 3, 6, 2, 7]. For any m>=1, for k such that 5*3^k+3>12m, a((5*3^k+3-12*m)/6)= m. For example, for k>=1, a((5*3^k-9)/6) = 1. - Benoit Cloitre, Oct 31 2002 MAPLE A046901 := proc(n) option remember; if n = 1 then 1 else if A046901(n-1)>n then A046901(n-1)-n else A046901(n-1)+n; fi; fi; end; MATHEMATICA a[1]=1; a[n_]:=a[n]=If[a[n-1]>n, a[n-1]-n, a[n-1]+n]; Table[a[i], {i, 70}]  (* Harvey P. Dale, Apr 01 2011 *) nxt[{n_, a_}]:={n+1, If[a>n+1, a-n-1, a+n+1]}; NestList[nxt, {1, 1}, 70][[All, 2]] (* Harvey P. Dale, Jun 01 2019 *) PROG (PARI) a(n)=if(n<2, 1, a(n-1)-if(sign(n-a(n-1))+1, -1, 1)*n); (Haskell) a046901 n = a046901_list !! (n-1) a046901_list = scanl1 (\u v -> if u > v then u - v else u + v) [1..] -- Reinhard Zumkeller, Dec 07 2015, Jan 31 2013 CROSSREFS Cf. A008344, A005132. Cf. A076039, A003462, A076041, A076042, A057198. Cf. A085059. Cf. A238324. Sequence in context: A021969 A172372 A279390 * A306640 A169751 A105332 Adjacent sequences:  A046898 A046899 A046900 * A046902 A046903 A046904 KEYWORD easy,nonn,nice,look AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:26 EDT 2019. Contains 328088 sequences. (Running on oeis4.)