This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046900 Triangle inverse to that in A046899. 1
 1, -1, 1, 1, -3, 2, 1, 3, -10, 6, -1, 9, 10, -42, 24, -17, 21, 50, 42, -216, 120, -107, -33, 230, 294, 216, -1320, 720, -415, -1173, 670, 1974, 1944, 1320, -9360, 5040, 1231, -13515, -4510, 11130, 17064, 14520, 9360, -75600, 40320, 56671, -113739, -131230, 20202, 136296, 157080, 121680, 75600 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Sequence gives numerators; denominators are A001813. REFERENCES H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. LINKS H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy) EXAMPLE 1; -1/2 1/2; 1/12 -3/12 2/12; ... MAPLE with(linalg): b:=proc(n, k) if k<=n then binomial(n+k, k) else 0 fi end: bb:=(n, k)->b(n-1, k-1): B:=matrix(12, 12, bb): A:=inverse(B): a:=(n, k)->((2*n-2)!/(n-1)!)*A[n, k]: for n from 0 to 10 do seq(a(n, k), k=1..n) od; # yields sequence in triangular form - Emeric Deutsch MATHEMATICA max = 10; b[n_, k_] := If[k <= n, Binomial[n+k, k], 0]; BB = Table[b[n, k], {n, 0, max-1}, {k, 0, max-1}]; AA = Inverse[BB]; a[n_, k_] := ((2n-2)!/(n-1)!)*AA[[n, k]]; Flatten[ Table[ a[n, k], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Aug 08 2012, after Emeric Deutsch *) CROSSREFS Cf. A046899. Sequence in context: A106611 A025261 A111572 * A270828 A230845 A194528 Adjacent sequences:  A046897 A046898 A046899 * A046901 A046902 A046903 KEYWORD sign,tabl,easy,nice AUTHOR EXTENSIONS More terms from Emeric Deutsch, Jun 25 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 15 19:54 EST 2018. Contains 317240 sequences. (Running on oeis4.)