login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046880 Number of isolated-pentagon (IPR) fullerenes with 2n vertices (or carbon atoms). 4
1, 0, 0, 0, 0, 1, 1, 1, 2, 5, 7, 9, 24, 19, 35, 46, 86, 134, 187, 259, 450, 616, 823, 1233, 1799, 2355, 3342, 4468, 6063, 8148, 10774, 13977, 18769, 23589, 30683, 39393, 49878, 62372, 79362, 98541, 121354, 151201, 186611, 225245, 277930, 335569 (list; graph; refs; listen; history; text; internal format)
OFFSET

30,9

COMMENTS

Enantiomorphic pairs are regarded as the same here. Cf. A086423.

REFERENCES

Brinkmann, Gunnar and Dress, Andreas W. M.; A constructive enumeration of fullerenes. J. Algorithms 23 (1997), no. 2, 345-358.

P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 33.

A. M. Livshits and Yu. E. Lozovik, "Cut-and-unfold approach to fullerene enumeration", J. Chem. Inf. Comput. Sci., (2004), vol. 44, 1517-1520

LINKS

Jan Goedgebeur, Table of n, a(n) for n = 30..200.

Gunnar Brinkmann, Jan Goedgebeur, Brendan D. McKay, The Generation of Fullerenes, arXiv:1207.7010v1 [math.CO]

Gunnar Brinkmann, Andreas Dress, fullgen.

Gunnar Brinkmann, Jan Goedgebeur, Brendan D. McKay, buckygen.

House of Graphs, Fullerenes.

CROSSREFS

Cf. A086423, A007894, A057210.

Sequence in context: A192279 A286356 A086422 * A142879 A284167 A108118

Adjacent sequences:  A046877 A046878 A046879 * A046881 A046882 A046883

KEYWORD

nonn,nice

AUTHOR

G. Brinkmann (Gunnar.Brinkmann(AT)ugent.be) and A. Dress (dress(AT)mathematik.uni-bielefeld.de)

EXTENSIONS

Added a(121)-a(200). a(30)-a(190) is independently confirmed by buckygen and fullgen, while a(191)-a(200) was only computed by buckygen. - Jan Goedgebeur, Aug 08 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 05:11 EST 2019. Contains 319353 sequences. (Running on oeis4.)