%I #39 Jan 19 2023 02:05:50
%S 0,0,0,0,0,1,3,1,2,2,0,2,0,1,5,2,5,0,4,0,1,7,2,8,6,0,1,2,1,2,1,0,4,4,
%T 5,0,3,1,6,2,8,0,0,1,1,1,0,1,3,4,2,5,0,0,5,2,8,0,4,0,1,2,6,0,1,2,0,1,
%U 4,7,2,8,3,1,1,2,2,5,0,4,5,0,0,1,7,2,8,2,0,1,5,2,4,0,4,2,5,0,1,0,1,4,2,2,0
%N a(n) = p mod (p mod 10) where p = prime(n).
%C From _Robert G. Wilson v_, Feb 12 2014: (Start)
%C a(n)=0 iff p ends in 1 (A030430) or is a single-digit prime, i.e., 2, 3, 5 or 7 (n = 1, 2, 3 or 4),
%C a(n)=3 iff n is in A142087,
%C a(n)=6 iff n is in A142094,
%C a(n)=7 iff n is in A142330,
%C a(n)=8 iff n is in A142335.
%C a(n) can never be 9. (End)
%D Idea derived from "The Creation of New Mathematics: An Application of the Lakatos Heuristic," pp. 292-298 of Philip J. Davis and Reuben Hersh, The Mathematical Experience, Houghton Mifflin Co, 1982. ISBN 0-395-32131-X.
%H Harvey P. Dale, <a href="/A046804/b046804.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Fi#final">Index entries for sequences related to final digits of numbers</a>
%e prime(10) = 29, so a(10) = 29 mod 9 = 2.
%t Mod[#,Last[IntegerDigits[#]]]&/@Prime[Range[110]] (* _Harvey P. Dale_, Jan 23 2013 *)
%t Mod[#,Mod[#,10]]&/@Prime[Range[110]] (* _Harvey P. Dale_, Aug 22 2020 *)
%K nonn,base,easy
%O 1,7
%A _Enoch Haga_
%E Name edited by _Jon E. Schoenfield_, Jan 19 2023