login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046804 Primes p modulo t where t = terminal digit of p. 0
0, 0, 0, 0, 0, 1, 3, 1, 2, 2, 0, 2, 0, 1, 5, 2, 5, 0, 4, 0, 1, 7, 2, 8, 6, 0, 1, 2, 1, 2, 1, 0, 4, 4, 5, 0, 3, 1, 6, 2, 8, 0, 0, 1, 1, 1, 0, 1, 3, 4, 2, 5, 0, 0, 5, 2, 8, 0, 4, 0, 1, 2, 6, 0, 1, 2, 0, 1, 4, 7, 2, 8, 3, 1, 1, 2, 2, 5, 0, 4, 5, 0, 0, 1, 7, 2, 8, 2, 0, 1, 5, 2, 4, 0, 4, 2, 5, 0, 1, 0, 1, 4, 2, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

From Robert G. Wilson v, Feb 12 2014: (Start)

a(n)=0 iff p ends in 1 (A030430) or is a single digit prime, i.e.; 2,3,5 or 7 (n=1,2,3 or 4),

a(n)=3 iff n is in A142087,

a(n)=6 iff n is in A142094,

a(n)=7 iff n is in A142330,

a(n)=8 iff n is in A142335,

a(n)#9.  (End)

REFERENCES

Idea derived from "The Creation of New Mathematics: An Application of the Lakatos Heuristic," pp. 292-298 of Philip J. Davis and Reuben Hersh, The Mathematical Experience, Houghton Mifflin Co, 1982. ISBN 0-395-32131-X.

LINKS

Table of n, a(n) for n=1..105.

Index entries for sequences related to final digits of numbers

EXAMPLE

If p = 29, then 29 - 27 = 2.

MATHEMATICA

Mod[#, Last[IntegerDigits[#]]]&/@Prime[Range[110]] (* Harvey P. Dale, Jan 23 2013 *)

CROSSREFS

Sequence in context: A103514 A016570 A070773 * A263211 A287571 A214316

Adjacent sequences:  A046801 A046802 A046803 * A046805 A046806 A046807

KEYWORD

nonn,base,easy

AUTHOR

Enoch Haga

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 10:40 EST 2017. Contains 295087 sequences.