login
A046774
Number of partitions of n with equal number of parts congruent to each of 0, 2, 3 and 4 (mod 5).
2
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 5, 5, 6, 7, 8, 12, 13, 14, 16, 17, 28, 33, 35, 37, 40, 61, 77, 83, 87, 94, 132, 168, 186, 194, 213, 277, 350, 392, 414, 460, 569, 703, 793, 843, 953, 1139, 1375, 1550, 1663, 1894, 2226, 2628, 2952, 3187, 3655, 4249, 4932
OFFSET
0,7
LINKS
FORMULA
G.f.: (Sum_{k>=0} x^(14*k)/(Product_{j=1..k} 1 - x^(5*j))^3)/(Product_{j>=0} 1 - x^(5*j+1)). - Andrew Howroyd, Sep 16 2019
PROG
(PARI) seq(n)={Vec(sum(k=0, n\14, x^(14*k)/prod(j=1, k, 1 - x^(5*j) + O(x*x^n))^4)/prod(j=0, n\5, 1 - x^(5*j+1) + O(x*x^n)))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
Cf. A046765.
Sequence in context: A038539 A275891 A109368 * A029105 A079954 A114968
KEYWORD
nonn
STATUS
approved