%I #9 Sep 16 2019 18:05:15
%S 1,0,0,0,1,0,0,0,1,1,0,1,1,1,1,1,5,1,2,2,6,11,3,3,7,16,23,8,9,18,38,
%T 44,24,21,44,79,86,59,52,96,157,163,141,118,199,295,318,304,259,387,
%U 549,613,632,534,736,1006,1179,1240,1070,1364,1842,2217,2366,2074,2508
%N Number of partitions of n with equal number of parts congruent to each of 0, 1, 2 and 3 (mod 5).
%H Andrew Howroyd, <a href="/A046771/b046771.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: (Sum_{k>=0} x^(11*k)/(Product_{j=1..k} 1 - x^(5*j))^3)/(Product_{j>=0} 1 - x^(5*j+4)). - _Andrew Howroyd_, Sep 16 2019
%o (PARI) seq(n)={Vec(sum(k=0, n\11, x^(11*k)/prod(j=1, k, 1 - x^(5*j) + O(x*x^n))^4)/prod(j=0, n\5, 1 - x^(5*j+4) + O(x*x^n)))} \\ _Andrew Howroyd_, Sep 16 2019
%Y Cf. A046765.
%K nonn
%O 0,17
%A _David W. Wilson_