login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046758 Equidigital numbers. 11

%I

%S 1,2,3,5,7,10,11,13,14,15,16,17,19,21,23,25,27,29,31,32,35,37,41,43,

%T 47,49,53,59,61,64,67,71,73,79,81,83,89,97,101,103,105,106,107,109,

%U 111,112,113,115,118,119,121,122,123,127,129,131,133,134,135,137,139

%N Equidigital numbers.

%C Write n as product of primes raised to powers, let D(n) = A050252 = total number of digits in product representation (number of digits in all the primes plus number of digits in all the exponents that are greater than 1) and l(n) = number of digits in n; sequence gives n such that D(n)=l(n).

%C A050252(a(n)) = A055642(a(n)). [_Reinhard Zumkeller_, Jun 21 2011]

%H Reinhard Zumkeller, <a href="/A046758/b046758.txt">Table of n, a(n) for n = 1..10000</a>

%H J. P. Delahaye, "Primes Hunters", <a href="http://www.pour-la-science.com/numeros/pls-258/logique.htm#int5">Economical and Prodigal Numbers (Text in French)</a> [broken link]

%H R. G. E. Pinch, <a href="http://www.chalcedon.demon.co.uk/publish.html#62">Economical numbers.</a> [broken link]

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EquidigitalNumber.html">Equidigital Number.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Equidigital_number">Equidigital number</a>

%e For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a member of this sequence.

%t edQ[n_] := Total[IntegerLength[DeleteCases[Flatten[FactorInteger[n]], 1]]] == IntegerLength[n]; Join[{1}, Select[Range[140], edQ]] (* _Jayanta Basu_, Jun 28 2013 *)

%o (Haskell)

%o a046758 n = a046758_list !! (n-1)

%o a046758_list = filter (\n -> a050252 n == a055642 n) [1..]

%o -- _Reinhard Zumkeller_, Jun 21 2011

%o (PARI) for(n=1, 100, s=""; F=factor(n); for(i=1, #F[, 1], s=concat(s, Str(F[i, 1])); s=concat(s, Str(F[i, 2]))); c=0; for(j=1, #F[, 2], if(F[j, 2]==1, c++)); if(#digits(n)==#s-c, print1(n, ", "))) \\ _Derek Orr_, Jan 30 2015

%Y Cf. A046759, A046760, A050252, A073048.

%K nonn,base,easy

%O 1,2

%A _N. J. A. Sloane_.

%E More terms from _Eric W. Weisstein_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 23:22 EDT 2019. Contains 321354 sequences. (Running on oeis4.)