The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046738 Period of Fibonacci 3-step sequence A000073 mod n. 17
 1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248, 624, 220, 553, 208, 155, 168, 117, 48, 140, 1612, 331, 64, 1430, 96, 1488, 312, 469, 360, 2184, 496, 560, 624, 308, 440, 1209, 2212, 46, 416, 336, 620, 1248, 168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Could also be called the tribonacci Pisano periods. [Carl R. White, Oct 05 2009] Klaska notes that n=208919=59*3541 satisfies a(n) = a(n^2). - Michel Marcus, Mar 03 2016 39, 78, 273, 546 also satisfy a(n) = a(n^2). - Michel Marcus, Mar 07 2016 LINKS T. D. Noe [1..1000] + Jean-François Alcover [1001..2000] + Zhong Ziqian [2001..20000], Table of n, a(n) for n = 1..20000 Jirí Klaška, A search for Tribonacci-Wieferich primes, Acta Mathematica Universitatis Ostraviensis, vol. 16 (2008), issue 1, pp. 15-20. Jirí Klaška, On Tribonacci-Wieferich primes, Fibonacci Quart. 46/47 (2008/2009), no. 4, 290-297. Jirí Klaška, Tribonacci partition formulas modulo m, Acta Mathematica Sinica, English Series, March 2010, Volume 26, Issue 3, pp 465-476. MATHEMATICA Table[a = {0, 1, 1}; a = a0 = Mod[a, n]; k = 0; While[k++; s = a[[3]] + a[[2]] + a[[1]]; a = RotateLeft[a]; a[[-1]] = Mod[s, n]; a != a0]; k, {n, 100}] (* T. D. Noe, Aug 28 2012 *) CROSSREFS Cf. A106302. Cf. A001175. Sequence in context: A051432 A064461 A046737 * A095324 A264341 A144290 Adjacent sequences:  A046735 A046736 A046737 * A046739 A046740 A046741 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 05:26 EDT 2021. Contains 343105 sequences. (Running on oeis4.)