login
Nontrivial (i.e., having no nontrivial factors with this property) integers which do not divide any terms of A000213.
5

%I #20 Mar 05 2019 08:24:43

%S 2,27,91,103,163,199,203,221,247,305,371,377,397,421,551,559,757,779,

%T 883,991,1021,1079,1087,1123,1189,1199,1237,1351,1521,1543,1567,1609,

%U 1651,1753,1769,1799,1807,1873,1883,1919,2009,2071,2261,2539

%N Nontrivial (i.e., having no nontrivial factors with this property) integers which do not divide any terms of A000213.

%H Robert Israel, <a href="/A046735/b046735.txt">Table of n, a(n) for n = 1..1275</a>

%p nd:= proc(p) local a,b,c,r,R;

%p a:= 1; b:= 1; c:= 1; R[1,1,1]:= true;

%p do

%p r:= a+b+c mod p;

%p if r = 0 then return false fi;

%p a:= b; b:= c; c:= r;

%p if assigned(R[a,b,c]) or nops({a,b,c})=1

%p then return true

%p else R[a,b,c]:= true

%p fi;

%p od

%p end proc:

%p N:= 10^4: # to get all terms <= N

%p V:= Vector(N): Res:= NULL:

%p for n from 1 to N do

%p if V[n] = 0 then

%p if nd(n) then Res:= Res,n; V[[seq(k*n,k=2..floor(N/n))]]:= 1; fi

%p fi;

%p od:

%p Res; # _Robert Israel_, Feb 26 2017

%t nondivisor[n_] := Module[{a = 1, b = 1, c = 1, t}, For[i = 1, i <= n^2, i++, t = Mod[a+b+c, n]; If[t != 0, a = b; b = c; c = t, Return[False]]; If[c == 1 && b == 1 && a == 1, Return[True]]]];

%t okQ[n_] := Do[If[nondivisor[d], Return[n == d]], {d, Divisors[n]}];

%t Select[Range[3000], okQ] (* _Jean-François Alcover_, Mar 05 2019, from PARI *)

%o (PARI) nondivisor(n)=my(a=1,b=1,c=1,t);for(i=1,n^2,t=(a+b+c)%n;if(t,a=b;b=c;c=t,return(0));if(c==1&&b==1&&a==1,return(1)))

%o is(n)=fordiv(n,d,if(nondivisor(d),return(n==d)));0 \\ _Charles R Greathouse IV_, Aug 29 2012

%K nonn

%O 1,1

%A _David W. Wilson_

%E Definition corrected by Henry Ayoola (henry.ayoola(AT)googlemail.com), Feb 03 2009

%E a(1) added by _Charles R Greathouse IV_, Aug 29 2012