This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046730 a(n) = A002172(n) / 2. 2

%I

%S -1,3,1,-5,-1,5,7,-5,-3,5,9,-1,3,-7,-11,7,11,-13,-9,-7,-1,15,13,-15,1,

%T -13,-9,5,-17,13,11,9,-5,17,7,-17,19,1,-3,15,17,-7,21,19,-5,-11,-21,

%U 19,13,1,-23,5,-17,-19,25,-13,-25,-23,-1,-5,15,27,-9,-19,25,-17,11,5,-25,27,23,29,-29,25

%N a(n) = A002172(n) / 2.

%H Seiichi Manyama, <a href="/A046730/b046730.txt">Table of n, a(n) for n = 1..10000</a>

%H L. Carlitz, <a href="http://dx.doi.org/10.1090/S0025-5718-1962-0152678-2">The coefficients of the lemniscate function</a>, Math. Comp., 16 (1962), 475-478.

%H <a href="/index/Ge#Glaisher">Index entries for sequences related to Glaisher's numbers</a>

%e From _Seiichi Manyama_, Sep 26 2016: (Start)

%e Let p be a prime of the form 4k+1 so that p = a^2 + b^2.

%e We take a odd and such that a = b + 1 (mod 4).

%e p = 5 = (-1)^2 + 2^2 and -1 = 2 + 1 (mod 4). So a(1) = -1.

%e p = 13 = 3^2 + 2^2 and 3 = 2 + 1 (mod 4). So a(2) = 3.

%e p = 17 = 1^2 + 4^2 and 1 = 4 + 1 (mod 4). So a(3) = 1.

%e p = 29 = 5^2 + 2^2 and -5 = 2 + 1 (mod 4). So a(4) = -5.

%e (End)

%t Map[-Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}] &, Select[Prime@ Range@ 155, Mod[#, 4] == 1 &]]/2 (* _Michael De Vlieger_, Sep 26 2016, after _Jean-François Alcover_ at A002172 *)

%o (PARI) a002172(n) = {my(m, c); if(n<1, 0, c=0; m=0; while(c<n, m++; if(isprime(m)& m%4==1, c++)); -sum(x=0, m-1, kronecker(x^3-x, m)))}

%o a(n) = a002172(n)/2; \\ _Altug Alkan_, Sep 27 2016

%Y Cf. A002172.

%K sign

%O 1,2

%A _N. J. A. Sloane_

%E Offset changed to 1 to match A002172, _Joerg Arndt_, Sep 27 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 12:44 EDT 2019. Contains 323393 sequences. (Running on oeis4.)