This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046730 a(n) = A002172(n) / 2. 2
 -1, 3, 1, -5, -1, 5, 7, -5, -3, 5, 9, -1, 3, -7, -11, 7, 11, -13, -9, -7, -1, 15, 13, -15, 1, -13, -9, 5, -17, 13, 11, 9, -5, 17, 7, -17, 19, 1, -3, 15, 17, -7, 21, 19, -5, -11, -21, 19, 13, 1, -23, 5, -17, -19, 25, -13, -25, -23, -1, -5, 15, 27, -9, -19, 25, -17, 11, 5, -25, 27, 23, 29, -29, 25 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 L. Carlitz, The coefficients of the lemniscate function, Math. Comp., 16 (1962), 475-478. EXAMPLE From Seiichi Manyama, Sep 26 2016: (Start) Let p be a prime of the form 4k+1 so that p = a^2 + b^2. We take a odd and such that a = b + 1 (mod 4). p =  5 = (-1)^2 + 2^2 and -1 = 2 + 1 (mod 4). So a(1) = -1. p = 13 =    3^2 + 2^2 and  3 = 2 + 1 (mod 4). So a(2) =  3. p = 17 =    1^2 + 4^2 and  1 = 4 + 1 (mod 4). So a(3) =  1. p = 29 =    5^2 + 2^2 and -5 = 2 + 1 (mod 4). So a(4) = -5. (End) MATHEMATICA Map[-Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}] &, Select[Prime@ Range@ 155, Mod[#, 4] == 1 &]]/2 (* Michael De Vlieger, Sep 26 2016, after Jean-François Alcover at A002172 *) PROG (PARI) a002172(n) = {my(m, c); if(n<1, 0, c=0; m=0; while(c

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 12:42 EDT 2019. Contains 322209 sequences. (Running on oeis4.)