The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046660 Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity). 83
 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3, 1). a(n) = 0 for squarefree n. A162511(n) = (-1)^a(n). - Reinhard Zumkeller, Jul 08 2009 a(n) = the number of divisors of n that are each a composite power of a prime. - Leroy Quet, Dec 02 2009 a(A005117(n)) = 0; a(A060687(n)) = 1; a(A195086(n)) = 2; a(A195087(n)) = 3; a(A195088(n)) = 4; a(A195089(n)) = 5; a(A195090(n)) = 6; a(A195091(n)) = 7; a(A195092(n)) = 8; a(A195093(n)) = 9; a(A195069(n)) = 10. - Reinhard Zumkeller, Nov 29 2015 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 M. Kac, Statistical Independence in Probability, Analysis and Number Theory, Carus Monograph 12, Math. Assoc. Amer., 1959, see p. 64. FORMULA a(n) = Omega(n) - omega(n) = A001222(n) - A001221(n). Additive with a(p^e) = e - 1. a(n) = Sum_{k = 1..A001221(n)} (A124010(n,k) - 1). - Reinhard Zumkeller, Jan 09 2013 G.f.: Sum_{p prime, k>=2} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Jan 06 2017 Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) =  Sum_{p prime} 1/(p*(p-1)) =  0.773156... (A136141). - Amiram Eldar, Jul 28 2020 MAPLE with(numtheory); A046660:=n->bigomega(n)-nops(factorset(n)); seq(A046660(k), k=1..100); # Wesley Ivan Hurt, Oct 27 2013 MATHEMATICA Table[PrimeOmega[n] - PrimeNu[n], {n, 50}] (* or *) muf[n_] := Module[{fi = FactorInteger[n]}, Total[Transpose[fi][]] - Length[fi]]; Array[muf, 50] (* Harvey P. Dale, Sep 07 2011. The second program is several times faster than the first program for generating large numbers of terms. *) PROG (PARI) a(n)=bigomega(n)-omega(n) \\ Charles R Greathouse IV, Nov 14 2012 (PARI) a(n)=my(f=factor(n)[, 2]); vecsum(f)-#f \\ Charles R Greathouse IV, Aug 01 2016 (Haskell) import Math.NumberTheory.Primes.Factorisation (factorise) a046660 n = sum es - length es where es = snd \$ unzip \$ factorise n -- Reinhard Zumkeller, Nov 28 2015, Jan 09 2013 CROSSREFS Not the same as A066301. Cf. A001222, A001221, A136141, A257851, A261256, A264959, A005117, A060687, A195086, A195087, A195088, A195089, A195090, A195091, A195092, A195093, A195069, A275699. Sequence in context: A280827 A103840 A066301 * A183094 A324192 A108730 Adjacent sequences:  A046657 A046658 A046659 * A046661 A046662 A046663 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 11:04 EDT 2020. Contains 337876 sequences. (Running on oeis4.)