login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046643 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives numerator of b_n. 23
1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 35, 1, 3, 1, 3, 1, 1, 1, 5, 3, 1, 5, 3, 1, 1, 1, 63, 1, 1, 1, 9, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 35, 3, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 231, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 3, 3, 1, 1, 1, 35, 35, 1, 1, 3, 1, 1, 1, 5, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

b(n) = A046643(n)/A046644(n) is multiplicative with b(p^n) = (2n-1)!!/2^n/n!. Dirichlet g.f. of A046643(n)/A046644(n) is sqrt(zeta(x)). - Christian G. Bower, May 16 2005

That is, b(p^n) = A001147(n) / (A000079(n)*A000142(n)) = A010050(n)/A000290(A000165(n)) = (2n)!/((2^n*n!)^2). - Antti Karttunen, Jul 08 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

Index entries for sequences computed from exponents in factorization of n

FORMULA

Sum_{b|d} b(d)b(n/d) = 1. Also b_{2^j} = A001790[ j ]/2^A005187[ j ].

From Antti Karttunen, Jul 08 2017: (Start)

Multiplicative with a(p^n) = A001790(n).

a(1) = 1; for n > 1, a(n) = A001790(A067029(n)) * a(A028234(n)).

(End)

EXAMPLE

b_1, b_2, ... = 1, 1/2, 1/2, 3/8, 1/2, 1/4, 1/2, 5/16, 3/8, 1/4, 1/2, 3/16, ...

MAPLE

b := proc(n) option remember; local c, i, t1; if n = 1 then 1 else c := 1; t1 := divisors(n);

for i from 2 to nops(t1)-1 do c := c-b(t1[ i ])*b(n/t1[ i ]); od; c/2; fi; end;

MATHEMATICA

b[1] = 1; b[n_] := b[n] = (dn = Divisors[n]; c = 1;

Do[c = c - b[dn[[i]]]*b[n/dn[[i]]], {i, 2, Length[dn] - 1}]; c/2); a[n_] := Numerator[b[n]]; a /@ Range[90] (* Jean-Fran├žois Alcover, Apr 04 2011, after Maple version *)

PROG

(PARI)

A046643perA046644(n) = { my(c=1); if(1==n, c, fordiv(n, d, if((d>1)&&(d<n), c -= (A046643perA046644(d)*A046643perA046644(n/d)))); (c/2)); }

A046643(n) = numerator(A046643perA046644(n)); \\ After Maple-program, Antti Karttunen, Jul 08 2017

(Scheme)

(define (A046643 n) (if (= 1 n) n (* (A001790 (A067029 n)) (A046643 (A028234 n)))))

;; Or, after Christian G. Bower's May 16 2005 comment:

(definec (A046643perA046644 n) (if (= 1 n) n (* (/ (A010050 (A067029 n)) (A000290 (A000165 (A067029 n)))) (A046643perA046644 (A028234 n)))))

(define (A046643 n) (numerator (A046643perA046644 n)))

(define (A046644 n) (denominator (A046643perA046644 n)))

;; Antti Karttunen, Jul 08 2017

CROSSREFS

Cf. A000079, A000165, A001147, A001790, A005187, A010050, A028234, A067029.

Cf. A046644, A046645.

Sequence in context: A131268 A109221 A238414 * A254101 A277604 A112475

Adjacent sequences:  A046640 A046641 A046642 * A046644 A046645 A046646

KEYWORD

nonn,easy,frac,nice,mult

AUTHOR

N. J. A. Sloane, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 17:52 EST 2019. Contains 320222 sequences. (Running on oeis4.)