login
A046642
Numbers k such that k and number of divisors d(k) are relatively prime.
18
1, 3, 4, 5, 7, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131
OFFSET
1,2
COMMENTS
Numbers k such that tau(k)^phi(k) == 1 (mod k), where tau(k) is the number of divisors of k (A000005) and phi(k) is the Euler phi function (A000010). - Michel Lagneau, Nov 20 2012
Density is at least 4/Pi^2 = 0.405... since A056911 is a subsequence, and at most 1/2 since all even numbers in this sequence are squares. The true value seems to be around 0.4504. - Charles R Greathouse IV, Mar 27 2013
They are called anti-tau numbers by Zelinsky (see link) and their density is at least 3/Pi^2 (theorem 57 page 15). - Michel Marcus, May 31 2015
From Amiram Eldar, Feb 21 2021: (Start)
Spiro (1981) proved that the number of terms of this sequence that do not exceed x is c * x + O(sqrt(x)*log(x)^3), where 0 < c < 1 is the asymptotic density of this sequence.
The odd numbers whose number of divisors is a power of 2 (the odd terms of A036537) are terms of this sequence. Their asymptotic density is A327839/A076214 = 0.4212451116... which is a better lower bound than 4/Pi^2 for the asymptotic density of this sequence.
A better upper limit than 0.5 can be obtained by considering the subsequence of odd numbers whose 3-adic valuation is not of the form 3*k-1 (i.e., odd numbers without those k with gcd(k, tau(k)) = 3), whose asymptotic density is 6/13 = 0.46153...
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 49, 459, 4535, 45145, 450710, 4504999, 45043234, 450411577, 4504050401, ... (End)
LINKS
Mart Abel, Helena Lauer, and Ellen Redi, About the number of τ-numbers relative to polynomials with integer coefficients, Acta Comment. Univ. Tartu. Math. 25, No. 1, 107-117, 2021.
Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
FORMULA
A009191(a(n)) = 1.
MATHEMATICA
Select[ Range[200], CoprimeQ[#, DivisorSigma[0, #]] &] (* Jean-François Alcover, Oct 20 2011 *)
PROG
(Haskell)
a046642 n = a046642_list !! (n-1)
a046642_list = map (+ 1) $ elemIndices 1 a009191_list
-- Reinhard Zumkeller, Aug 14 2011
(PARI) is(n)=gcd(numdiv(n), n)==1 \\ Charles R Greathouse IV, Mar 27 2013
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved