This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046188 Indices of octagonal numbers which are also pentagonal. 3
 1, 8, 725, 8844, 836265, 10205584, 965048701, 11777234708, 1113665364305, 13590918647064, 1285168865358885, 15683908341476764, 1483083756958788601, 18099216635145538208, 1711477370361576686285, 20886480313049609614884, 1975043402313502537183905 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From Ant King, Dec 17 2011: (Start) lim_{n->infinity} a(2n+1)/a(2n) = (1/7)*(331 + 234*sqrt(2)). lim_{n->infinity} a(2n)/a(2n-1) = (1/7)*(43 + 30*sqrt(2)). (End) LINKS Colin Barker, Table of n, a(n) for n = 1..654 Eric Weisstein's World of Mathematics, Octagonal Pentagonal Number. Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1). FORMULA From Ant King, Dec 17 2011: (Start) a(n) = 1154*a(n-2) - a(n-4) - 384. a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5). a(n) = (1/24)*sqrt(2)*((3-sqrt(2)*(-1)^n)*(1+sqrt(2))^(4*n-3) - (3+sqrt(2)*(-1)^n)*(1-sqrt(2))^(4*n-3) + 4*sqrt(2)). a(n) = ceiling((1/24)*sqrt(2)*((3-sqrt(2)*(-1)^n)*(1+sqrt(2))^(4*n-3))). G.f.: x*(1 + 7*x - 437*x^2 + 41*x^3 + 4*x^4)/((1-x)*(1 - 34*x + x^2)*(1 + 34*x + x^2)). (End) MATHEMATICA LinearRecurrence[{1, 1154, -1154, -1, 1}, {1, 8, 725, 8844, 836265}, 15] (* Ant King, Dec 17 2011 *) PROG (PARI) Vec(-x*(4*x^4+41*x^3-437*x^2+7*x+1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^50)) \\ Colin Barker, Jun 23 2015 CROSSREFS Cf. A046187, A046189. Sequence in context: A277860 A221198 A071308 * A014387 A220641 A017007 Adjacent sequences:  A046185 A046186 A046187 * A046189 A046190 A046191 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 05:47 EDT 2019. Contains 325213 sequences. (Running on oeis4.)