login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046180 Hexagonal pentagonal numbers. 3
1, 40755, 1533776805, 57722156241751, 2172315626468283465, 81752926228785223683195, 3076689623521787481625080301, 115788137209866023854693048367775, 4357570752679408318225730700647767185, 163992817590548715438241125333485021875651 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (2+sqrt(3))^8 = 18817 + 10864*sqrt(3). - Ant King, Dec 13 2011

Dickson calls the terms "triangular, pentagonal and hexagonal" (all hexagonal numbers are also triangular). - Jonathan Sondow, May 06 2014

LINKS

Colin Barker, Table of n, a(n) for n = 1..219

L. E. Dickson, History of the Theory of Numbers, vol. II, pp. 19-20.

Eric Weisstein's World of Mathematics, Hexagonal Pentagonal Number.

Index entries for linear recurrences with constant coefficients, signature (37635,-37635,1).

FORMULA

a(n) = 37634*a(n-1) - a(n-2) + 3136; g.f.: x*(1+3120*x+15*x^2)/((1-x)*(1-37634*x+x^2)). - Warut Roonguthai Jan 08 2001

a(n+1) = 18817*a(n)+1568+1358*(192*a(n)^2+32*a(n)+1)^0.5 - Richard Choulet, Sep 19 2007

a(n) = -(1/12)+(5/16)*sqrt(3)*{[18817+10864*sqrt(3)]^n-[18817-10864*sqrt(3)]^n}+(13/24)*[18817+10864*sqrt(3)]^n+[18817-10864*sqrt(3)]^n }, with n>=0. - Paolo P. Lava, Nov 25 2008

From Ant King, Dec 13 2011: (Start)

a(n) = 37635*a(n-1) - 37635*a(n-2) + a(n-3).

a(n) = (1/48)*((2+sqrt(3))^(8n-5)+(2-sqrt(3))^(8n-5)-4).

a(n) = floor((1/48)*(2+sqrt(3))^(8n-5)).

a(n) = (1/48)*((tan(5*Pi/12))^(8n-5)+(tan(Pi/12))^(8n-5)-4).

a(n) = floor((1/48)*(tan(5*pi/12))^(8n-5)).

(End)

MATHEMATICA

LinearRecurrence[{37635, -37635, 1}, {1, 40755, 1533776805}, 8] (* Ant King, Dec 13 2011 *)

PROG

(PARI) Vec(x*(1+3120*x+15*x^2)/((1-x)*(1-37634*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 21 2015

CROSSREFS

Cf. A046178, A046179.

Sequence in context: A250955 A097238 A249879 * A164648 A232301 A212080

Adjacent sequences:  A046177 A046178 A046179 * A046181 A046182 A046183

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 18:47 EST 2016. Contains 278745 sequences.