login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046180 Hexagonal pentagonal numbers. 2
1, 40755, 1533776805, 57722156241751, 2172315626468283465, 81752926228785223683195, 3076689623521787481625080301, 115788137209866023854693048367775 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

As n increases, this sequence is approximately geometric with common ratio r=lim(n->Infinity,a(n)/a(n-1))=(2+sqrt(3))^8=18817+10864*sqrt(3). - Ant King, Dec 13 2011

LINKS

Table of n, a(n) for n=1..8.

Eric Weisstein's World of Mathematics, Hexagonal Pentagonal Number.

Index to sequences with linear recurrences with constant coefficients, signature (37635,-37635,1).

FORMULA

a(n) = 37634*a(n-1) - a(n-2) + 3136; g.f.: (1+3120*x+15*x^2)/((1-x)*(1-37634*x+x^2)) - Warut Roonguthai Jan 08 2001

a(n+1)=18817*a(n)+1568+1358*(192*a(n)^2+32*a(n)+1)^0.5 - Richard Choulet, Sep 19 2007

a(n)=-(1/12)+(5/16)*sqrt(3)*{[18817+10864*sqrt(3)]^n-[18817-10864*sqrt(3)]^n}+(13/24)*[18817+10864*sqrt(3)]^n+[18817-10864*sqrt(3)]^n }, with n>=0 [From Paolo P. Lava, Nov 25 2008]

From Ant King, Dec 13 2011: (Start)

a(n) = 37635*a(n-1) - 37635*a(n-2) + a(n-3).

a(n) = 1/48*((2+sqrt(3))^(8n-5)+(2-sqrt(3))^(8n-5)-4).

a(n) = floor(1/48*(2+sqrt(3))^(8n-5)).

a(n) = 1/48*((tan(5*pi/12))^(8n-5)+(tan(pi/12))^(8n-5)-4).

a(n) = floor(1/48*(tan(5*pi/12))^(8n-5)).

(End)

MATHEMATICA

LinearRecurrence[{37635, -37635, 1}, {1, 40755, 1533776805}, 8] (* Ant King, Dec 13 2011 *)

CROSSREFS

Cf. A046178, A046179.

Sequence in context: A218399 A090060 A097238 * A164648 A232301 A212080

Adjacent sequences:  A046177 A046178 A046179 * A046181 A046182 A046183

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 17 15:01 EDT 2014. Contains 240645 sequences.