login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046177 Squares (A000290) which are also hexagonal numbers (A000384). 4
1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441, 4446390382511295358038307980025, 5131130648390546663702275158894481 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also, odd square-triangular numbers (or bisection of A001110 = {0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, ...} = Numbers that are both triangular and square: a(n) = 34a(n-1) - a(n-2) + 2). - Alexander Adamchuk, Nov 06 2007

Let be y^2=x*(2*x-1)=H_x (x>=1). The least both hexagonal and square number which is greater than y^2 is given by the relation (24*x+17*y-6)^2 = H_{17*x+12*y-4}. - Richard Choulet, May 01 2009

As n increases, this sequence is approximately geometric with common ratio r = lim(n -> Infinity, a(n)/a(n-1)) = ( 1+ sqrt(2))^8 = 577 + 408 * sqrt(2). - Ant King Nov 08 2011

Also centered octagonal numbers (A016754) which are also triangular numbers (A000217). - Colin Barker, Jan 16 2015

Also hexagonal numbers (A000384) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 25 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..327

Eric Weisstein's World of Mathematics, Hexagonal Square Number.

Eric Weisstein's World of Mathematics, Square Triangular Number.

Index entries for linear recurrences with constant coefficients, signature (1155,-1155,1).

FORMULA

a(n) = A001110(2n-1). - Alexander Adamchuk, Nov 06 2007

a(n+1) = 577*a(n)+36+204*(8*a(n)^2+a(n))^0.5 for n>=1 (a(0)=1). - Richard Choulet, May 01 2009

a(n+2) = 1154*a(n+1)-a(n)+72 for n>=0. - Richard Choulet, May 01 2009

From Ant King, Nov 07 2011: (Start)

a(n) = 1155*a(n-1) - 1155*a(n-2) + a(n-3).

a(n) = 1/32*((1 + sqrt(2))^(8*n - 4) + (1 - sqrt(2))^(8*n-4) - 2).

a(n) = floor(1/32*(1 + sqrt(2))^(8*n - 4)).

a(n) = 1/32*((tan(3*Pi/8))^(8*n-4) + (tan(Pi/8))^(8*n-4) - 2).

a(n) = floor(1/32*(tan(3*Pi/8))^(8*n-4)).

G.f.: x*(1 + 70*x + x^2)/((1 - x)*(1 - 1154*x + x^2)).

(End)

a(n) = A096979(4*n - 3). - Ivan N. Ianakiev, Sep 05 2016

a(n) = (1/2) * (A002315(n))^2 * ((A002315(n))^2 + 1) = ((2*x + 1)*sqrt(x^2 + (x+1)^2))^2, where x = (1/2)*(A002315(n)-1). - Ivan N. Ianakiev, Sep 05 2016

MATHEMATICA

LinearRecurrence[{1155, -1155, 1}, {1, 1225, 1413721}, 11] (* Ant King, Nov 08 2011 *)

PROG

(PARI) Vec(x*(1+70*x+x^2)/((1-x)*(1-1154*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 16 2015

CROSSREFS

Cf. A008844, A046176, A253826.

Cf. A001110 (Numbers that are both triangular and square).

Cf. A000290, A000384, A016754, A253826.

Sequence in context: A267297 A151657 A218273 * A031748 A031533 A031713

Adjacent sequences:  A046174 A046175 A046176 * A046178 A046179 A046180

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 18:47 EST 2016. Contains 278745 sequences.