%I #30 Apr 22 2022 04:39:48
%S 23,29,59,79,269,619,659,1109,1499,1619,1759,1879,2389,2689,3319,3929,
%T 4019,5119,5399,5449,5659,6329,6379,9479,11839,12119,12659,13469,
%U 14639,14759,15809,15919,17489,18229,19489,20359,21499,23339,24109
%N Last member of a sexy prime quadruple: value of p+18 such that p, p+6, p+12 and p+18 are all prime.
%H Amiram Eldar, <a href="/A046124/b046124.txt">Table of n, a(n) for n = 1..10000</a>
%H Maxie D. Schmidt, <a href="https://arxiv.org/abs/1701.04741">New Congruences and Finite Difference Equations for Generalized Factorial Functions</a>, arXiv:1701.04741 [math.CO], 2017.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SexyPrimes.html">Sexy Primes</a>. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021].
%F a(n) = A023271(n)+18 = A046122(n)+12 = A046123(n)+6. - _Michel Marcus_, Jan 06 2015
%t lst={};Do[p=Prime[n];If[PrimeQ[p+6]&&PrimeQ[p+12]&&PrimeQ[p+18], AppendTo[lst, p+18]], {n, 8!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 29 2008 *)
%o (Magma) [p+18: p in PrimesUpTo(30000) | IsPrime(p+6) and IsPrime(p+12) and IsPrime(p+18)]; // _Vincenzo Librandi_, Jan 07 2015
%Y Cf. A023271, A046122, A046123.
%K nonn
%O 1,1
%A _Eric W. Weisstein_, Dec 11 1999